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Introduction
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MSTD Sets

Definition
Given a finite subset S of a group G, written additively,
we define its sum set

S+ S := {s1 + s2 : s1, s2 ∈ S},

and difference set

S− S := {s1 − s2 : s1, s2 ∈ S}.
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MSTD Sets

Definition
A finite set S is called MSTD (“more sums than
differences”) if

|S+ S| > |S− S|,

MDTS (“more differences than sums”) if

|S+ S| < |S− S|,

and balanced if

|S+ S| = |S− S|.

4



Major Results in Z

Theorem (Martin, O’Bryant)
Let P = {0, 1, . . . ,n}. For n ≥ 14, there exists 0 < c < 1
such that at least c · 2n+1 of the subsets of P are MSTD,
MDTS, and balanced respectively.

Theorem (Zhao)
The proportions of MSTD, MDTS, and balanced subsets
of P all converge to limits as n→ ∞.

• Zhao proved: MSTD limit > 4.28 · 10−4

• Monte Carlo: MSTD limit ≈ 4.5 · 10−4
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MSTD in Integers vs. Finite Groups

• In finding MSTD subsets of {0, 1, . . . ,n} ⊆ Z, we usually
look at “fringes.”

0 9 33 56 79 89

• However, we do not have that “fringe” structure in finite
groups. That is because unlike in Z, finite groups do
not have an ordering that respects addition.

• For example, in Z/nZ, the sumset “wraps around” and
overlaps itself, destroying the fringe structure.
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MSTD in Finite Abelian Groups

Theorem (Zhao)

• The number of MSTD subsets of Z/nZ is

∼

{
3n/2 odd n
nϕn
2 even n

• The number of MSTD subsets of Z/nZ× Z/2Z is

∼

{
3n+1 odd n
3n even n
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MSTD in Finite Groups

Theorem (Miller-Vissuet 2014)
Let {Gn} be a family of finite groups, not necessarily
abelian, such that |Gn| → ∞. If Sn is a uniformly chosen
random subset of Gn, then
P(Sn + Sn = Sn − Sn = Gn) → 1 as n→ ∞.

Proof idea.

• Given g ∈ Gn, form a partition of the group with chains
X = {x1, . . . , xℓ} such that

x1 + x2 = x2 + x3 = · · · = xℓ + x1 = g

• Show P(g /∈ Sn + Sn) and P(g /∈ Sn − Sn) are each∏
X L(|X|)
2|Gn| ≤

∏
X 1.8|X|
2|Gn| → 0 as n→ ∞
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The Dihedral Group
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MSTD in D2n

• Miller and Vissuet looked the Dihedral group D2n

• Started by proving probabilistic results in Z/nZ

Theorem (Miller-Vissuet)
Let S1 and S2 be uniformly chosen random subsets of
Z/nZ. Then

P(k /∈ S1 + S1) = O((3/4)n/2)
P(k /∈ S1 − S1) = O((ϕ/2)n)
P(k /∈ S1 + S2) = (3/4)n

P(k /∈ S1 − S2) = (3/4)n.
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From Z/nZ to D2n

• To apply these results in D2n, decompose S into
rotations and reflections: S = R ∪ F

Set Rotations in Set Reflections in Set
S R F

S+ S R+ R, F+ F R+ F, −R+ F
S− S R− R, F+ F R+ F

• S+ S has contributions from R+ R and −R+ F

• S− S has contributions from R− R

Conjecture
There are more MSTD than MDTS subsets of D2n.
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Exact Probabilities in Z/nZ

We can improve one of Miller and Vissuet’s results:

Theorem (SMALL 2020)
Let S ⊆ Z/nZ. Then,

P(k /∈ S+ S) = (3/4)n/2
(√

3+ 2
6

)
.

Proof.
Find exact probabilities for given parity of k and n, then
average.
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Expected Size of |R+ R| and | − R+ F|

• For S = R ∪ F ⊆ D2n,

E(|R+ R|) = n
(
1− (3/4)n/2

√
3+ 2
6

)
E(| − R+ F|) = n(1− (3/4)n/2)

• Thus,

E(|R+ R|+ | − R+ F|) = n
(
2− (3/4)n/2

√
3+ 8
6

)
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Comparing to |R− R|

• R− R is all rotations, so |R− R| ≤ n. So,

E(|R− R|) ≤ n.

• Comparing |R− R| and |R+ R|+ | − R+ F|,

E(|R+ R|+ | − R+ F|) ≥ E(|R− R|)

⇕

n
(
2− (3/4)n/2

√
3+ 8
6

)
≥ n.

• This holds for n > 3.
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Back to Sum and Difference Sets

• How can we use these results to show there are more
MSTD than MDTS sets?

• |R+ R|+ | − R+ F| > |R− R| doesn’t mean
|S+ S| > |S− S|

• For example, if |S| > n, then S+ S = S− S = D2n, but
above still holds

• Have to consider overlap with F+ F and R+ F to get
actual expected size of |S+ S| − |S− S|
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Cayley Tables for D2n
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Cayley Tables

A Cayley Table describes the structure of a finite group
by showing all combinations of two group elements with
the group operation.

Cayley Table for D6:

+
rot. ref.

1 r r2 s rs r2s

ro
t.

1 1 r r2 s rs r2s
r r r2 1 rs r2s s
r2 r2 1 r r2s s rs

re
f.

s s r2s rs 1 r2 r
rs rs s r2s r 1 r2
r2s r2s rs s r2 r 1
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Inverse Column Cayley Tables

An Inverse Column Cayley Table describes the structure
of a finite group by showing all combinations of two
group elements with the inverse of the group operation.

Inverse Column Cayley Table for D6:

− rot. ref.
1 r r2 s rs r2s

ro
t.

1 1 r2 r s rs r2s
r r 1 r2 rs r2s s
r2 r2 r 1 r2s s rs

re
f.

s s rs r2s 1 r2 r
rs rs r2s s r 1 r2
r2s r2s s rs r2 r 1
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Number of Asymmetric Elements

• We used + and − tables to find formulas for the
number of asymmetric elements.

• The tables have small differences for n odd or even.
• For the + table, the number of asymmetric elements is

2n
(
2
⌊
n+ 1
2

⌋
+ n−

⌊n
2

⌋
− 3
)

• For the − table, the number of asymmetric elements is

4n(n−
⌊n
2

⌋
− 1)

Lemma (SMALL 2020)
There are more asymmetric elements in the + table
than the − table for D2n for n ≥ 3.

19



Probability of a Subset Being MSTD or MDTS

• We want to find the probability of a subset A of D2n
being MSTD or MDTS.

• We can do this by conditioning on the size of A.

• We notice that if |A| = 1, then |A+ A| = |A− A| = 1, so it
is balanced.

• We also have the following lemma

Lemma (SMALL 2020)
If |A| > n, then |A+ A| = |A− A| = |D2n|.
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Probability When |A| = 2

• When |A| = 2, there are three possibilities for the
distribution of |R| and |F|: |R| = 2 and |F| = 0, |R| = 1
and |F| = 1, and |R| = 0 and |F| = 2.

• By conditioning on these three, using the Law of Total
Probability, we get the following expression:

P(|A+ A| > |A− A| : |A| = 2)
= P(|A+ A| > |A− A| : |A| = 2 ∩ |R| = 2)P(|R| = 2 : |A| = 2)
+ P(|A+ A| > |A− A| : |A| = 2 ∩ |R| = 1)P(|R| = 1 : |A| = 2)
+ P(|A+ A| > |A− A| : |A| = 2 ∩ |R| = 0)P(|R| = 0 : |A| = 2)

Lemma (SMALL 2020)
P(|A+A| > |A−A| : |A| = 2) > P(|A+A| < |A−A| : |A| = 2)
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Breaking Down Sets Based on Size

What can we say about sets of sizes between 3 and n?

Lemma (SMALL 2020)
For odd n, P(|A+ A| < |A− A| : |A| = n) = 0.

So for odd n, there are no MDTS subsets of size n of D2n.
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Injective Mappings

• Now that we know that for when |A| = 2, there are
strictly more MSTD sets than MDTS sets, one possible
proof method is to show that for each other value of
|A|, there are just at least as many MSTD sets as MDTS
sets

• One way to show this would be to consturct an
injection from the MDTS sets to MSTD sets given |A|

• This would complete the proof of the main conjecture
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Conclusion
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Future Work

Our goal is to prove that there are more MSTD than MDTS
sets in D2n.

• Explore interaction between R+ R, R− R, and F+ F in
subsets of D2n

• Extend Cayley Tables approach for 3 ≤ |A| ≤ n.

• Construct an injective mapping from MDTS sets to
MSTD sets (given a set size |A|).
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