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Introduction
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Unknots and Unlinks

What is a knotted surface? We must first start with some general
knot theory.

Definition

The unknot is the simplest knot, defined as an unknotted circle (or
something isotopic) which lies in R3.

Definition

A c-component unlink is a diagram which can be untangled into c
copies of the unknot.



Introduction Group G’s Work Group O2’s Work Group O3’s Work Conclusion

Tri-plane Diagrams

We can give a two-dimensional representation of a surface K in R4

via a tri-plane diagram [c.f. Figure: 1].

Figure: 1. An example of a tri-plane diagram K = (K1,K2,K3).

A valid tri-plane diagram must satisfy:

Should have the same number of strands (and hence same
number of endpoints on the horizontal axis).

Each strand should be a trivial tangle, that is, each strand has
one relative maximum w.r.t the horizontal axis.

Each of K1 ∪ K2, K2 ∪ K3, and K3 ∪ K1 should be diagrams
for an unlink.
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Tri-plane Diagrams (continued)

One can verify that the diagram in Figure: 1 is a tri-plane diagram.
In fact, it depicts the knotted surface known as the spun trefoil.

Clearly, each tangle is trivial and each diagram has four strands.
Inspecting the below figure allows us to verify that each mirrored
union is an unlink.

Figure: 2. A verification that the mirrored unions are unlinks.
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Tri-plane Moves

Just as in 3-dimensional knot theory, tri-plane diagrams can
undergo local changes via the three Reidemeister moves, which are
pictured in Figure 3.

Figure: 3. The three Reidemeister moves.

Additionally, we can perform mutual braid moves, which are shown
in Figure 4.

Figure: 4. A mutual Braid Move
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Tri-plane moves (continued)

We can also perform stabilization and destabilization moves as
pictured in Figure 5.

Figure: 5. Stabilization and Destabilization

Definition

A tri-plane move is either a Reidemeister move, a mutual braid
move, or a stabilization/destabilization.
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Tri-plane Diagrams for Unknotted Surfaces

Diagram for P+

Diagram for P−

Diagram for T

Diagram for U
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Unknotted Surfaces

We write K ∼ K ′ if K ′ can be obtained from K via a finite
series of tri-plane moves and planar isotopies. One can check
that ∼ as defined above is an equivalence relation with
equivalence class [K ]. We call [K ] a knotted surface.

We call a surface unknotted if it is either the unknotted
two-sphere U, or a finite connected sum of copies of the
positive unknotted projective plane P+, the negative
unknotted projective plane P−, or the unknotted torus, T .
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Writhe

Definition

Take a knot (or link) diagram and assign an orientation by moving
along the knot with arrows. To each crossing where the arrow in
the right direction is an over crossing, associate a +1. To each
crossing where the arrow pointing right is an under crossing,
associate a −1. We define the writhe of K , w(K ) as the sum of
these +1 and −1 which appear at each crossing.

Figure: 6. Computing Writhe
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Bridge Number and Crossing Number

Definition

We define the bridge number b(K ) of a tri-plane diagram K as the
number of strands in each picture. The bridge number of an
unknotted surface b([K ]) is defined to be the minimal bridge
number that appears for the given surface, i.e.
b([K ]) = min{b(K ′) : K ∼ K ′}.

Definition

We define the crossing number c(K ) of a tri-plane diagram K is
the number of times that strands in all three diagrams cross. The
crossing number of a knotted surface c([K ]) is defined as the
minimal crossing number that appears in some representation of
the surface K , i.e.e c([K ]) = min{c(K ′) : K ′ ∼ K}.
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Patch Numbers and Invariants

Definition

We define the patch numbers p12, p23, and p31 as the number of
components which appear in the unlinks for K1 ∪ K2, K2 ∪ K3, and
K3 ∪ K1, respectively.

Definition

We define the Euler characteristic of a surface K as
χ(K ) = p12 + p23 + p31 − b, where pij are the patch numbers and
b is the bridge number. We call χ an invariant because if K ∼ K ′,
then χ(K ) = χ(K ′).

Definition

We define the normal Euler number of a surface K as
e(K ) = w(K1 ∪ K2) + w(K2 ∪ K3) + w(K3 ∪ K1). We call e and
invariant because if K ∼ K ′, then e(K ) = e(K ′).
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Orientability

Definition

Given a tri-plane diagram K with b strands, to each endpoint we
will associate either a + or a −. We do so in such a way so that
each strand has a + at one endpoint and a − at the other. We
also ensure that the signs are consistent between all three
diagrams. If all 2b signs in each diagram match and each strand
receives one sign each, then we say that K is orientable, and we
write o(K ) = 1. Otherwise, o(K ) = 0. It is worth noting that o is
also an invariant.

Figure: 7. The spun trefoil is orientable.
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Connected Sums

Another definition:

Definition

Consider two tangle diagrams K1 and K2. We can take a
connected sum K1#K2 of the diagrams by detaching an endpoint
on each diagram from the y -axis and connecting them. See the
below figure.

Figure: 8. Connected sum of two tangle diagrams.
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Group G’s Work
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Representing Tangles

Need to tell a computer what a tangle is

Snappy/Spherogram are good, but not what we need

Idea: a trivial tangle is a braid plus a cap diagram

Braids: form a group; Sage understands this group
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Representing Tangles

Cap diagram:

Cap diagrams are generated using a classical algorithm

Capping off braids:
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Listing Triplane Diagrams

Goal

List all triplane diagrams with small bridge & crossing #.

How do we check if three trivial tangles form a triplane
diagram?

1 Translate to Spherogram
2 Check if resulting links are unlinks

Problem: this takes a really long time

There are A LOT of braids
Looking at three tangles cubes everything

Solutions:

Braids are words in generators, so remove duplicates
Generation and verification separately
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Computing Invariants

Goal

Automatically compute invariants of a triplane diagram

Orientability and Euler characteristic: variations on greedy
algorithm

Start at an arbitrary point/orientation
Chase around the diagrams making inferences

Other invariants: Snappy/Spherogram

E.g., computing writhe



Introduction Group G’s Work Group O2’s Work Group O3’s Work Conclusion

Group O2’s Work
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Some Preliminary Results

Proposition 1
[T#P+] = [P+#P−#P+],[T#P−] = [P−#P+#P−]

Remark If an unknotted P is orientable, then [P] = [U] or
[P] = [T n]; otherwise [P] = [P+]n#[P−]m =: Pn,m.

Proposition 2 For any tri-plane diagram P, |e(P)| ≤ 2c(P).

Corollary 3 |n −m| ≤ c(Pn,m) ≤ max{n,m}.
Proposition 4 c([P#P ′]) ≤ c([P]) + c([P ′]).

Proposition 5 If c([P]) = 0, then [P] is orientable.
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Main Results

Theorem

c([Pn,m]) = max{1, |n −m|}

Proof.

Step I. Prove c([Pn,m]) = c([Pm,n])

Step II. Prove c([Pn,n]) = c([Pn,n+1]) = 1

Step III. Apply Prop. 4:
c([Pn,n+k ]) ≤ c([Pn,n+1]) + (k−1)c([P0,1]) = 1 + (k−1) = k
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Step II

Lemma

∀n ∈ N+, [P
n,n] has a diagram that looks like the following:

We use the pair of unlink diagrams, P12 = P1 ∪ P2 and
P32 = P3 ∪ P2 to visualize the tri-plane moves to reduce
crossings.
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Step II

Proof.

Base case n = 1:
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Step II

Proof.

Inductive Step from n to n + 1:
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Step II

Corollary

c([Pn,n+1]) = 1

Proof.

Perform a left translation as follows
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Future Work

Conjecture

If c([P]) < 4, then [P] is unknotted.
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Group O3’s Work
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Goal: Compile a Body of Knotted Surfaces

Examples are immensely helpful in the research process as
they build intuition and are critical for testing conjectures.

In regular knot theory, it is easy to work with and come up
with new knots.

Unfortunately, coming up with a list of distinct and interesting
tri-plane diagrams for knotted surfaces is not easy.
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CH-Diagrams

Luckily, there are already lists of knotted surfaces.
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Converting CH-Diagrams

Here we see a ch-diagram and a tri-plane diagram for the spun
trefoil knotted surface.
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Converting CH-Diagrams

To convert a CH-diagram, we first want to put it into bridge
position.
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Converting CH-Diagrams

We then resolve the top portion into two tangles, and the bottom
into it’s own.
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Converting CH-Diagrams

We then verify if the tangles make up a valid tri-plane
diagram.

If they don’t, we have to start over and try again with a
different bridge position.

Once we have a tri-plane diagram we can calculate invariants
for the diagram.
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Conclusion



Introduction Group G’s Work Group O2’s Work Group O3’s Work Conclusion

Acknowledgements

Big thanks to. . .

Alex Zupan, Ana Wright, and Nick Meyer for guidance
and insight

Polymath REU organizers for this wonderful opportunity!



Introduction Group G’s Work Group O2’s Work Group O3’s Work Conclusion

References

J. Meier & A. Zupan. Bridge trisections of knotted surfaces in
S4. 2017. Transactions of the American Mathematical Society
369, 7343-7386. https://doi.org/10.1090/tran/6934

H. Yoshikawa. An enumeration of surfaces in four-space. 1994.
Osaka Journal of Mathematics 31(3): 497-522.

https://doi.org/10.1090/tran/6934

	Introduction
	Group G's Work
	Group O2's Work
	Group O3's Work
	Conclusion

