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Definitions

A'is finite set in Z9, |A| is its size. Define

o Sumset: A+ A={a+ g : a,a < A}.
o Difference set: A—A={a,— g : a;, g < A}.

Definition

Difference dominated: |[A — A| > |A+ A|
Balanced: |A— Al = |A+ A|

Sum dominated (or MSTD): |[A+ A| > |A— A|.
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Motivation

We often care about the sumset /difference set of A C Z.

@ Goldbach’s Conjecture: EC P+ P

e Fermat’s Last Theorem: If A, is the set of positive n-th
powers, then (A, + A,) NA, =0 foralln>3

Natural question: What are the sizes of the
sumsets/difference sets?
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History

How big do we expect the sumset to be? How big do we
expect the difference set to be?

e X+y=y+xandx—y#y—x.

Conway’s MSTD set: A={0,2,3,4,7,11,12,14}

o A+ A =26

o |A—Al =25

Nathanson, Problems in Additive Number Theory: “With
the right way of counting the vast majority of sets satisfy
IA—Al > |A+ A7

L
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History

Martin-O’Bryant: A positive percentage of sets
AcC[0,n—1]are MSTD as n — .

Zhao: The percentage approaches a limit and

im #{A C[0,n—1]; Ais sum-dominant}
|

n—soo 2n

> 0.000428.
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Constructing MSTD Sets

@ Say AC[0,n],then x € A+ Aifwe canfind a;,a, € A
such that a; + a, = x.

@ The number of pairs in [0, n] that sum to x is large,
except when x is near 0 or 2n.

e With high probability, the middle will be full, but the
fringes will be missing elements

e As the fringes in the sumset and difference set are
made by fringes in the original set, the trick is to control
the fringes.
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Definitions

We generalize the idea of sumsets and difference sets:

SA—-—dA = A+...+4_(A+...+A)’

-~

TV
s times d times

Previous work by SMALL REU students showed
e For any sy + d; = s, + s, there exists a set A such that
|S1A — d1A| > |52A — d2A|

e For any k € N, there exists a set A such that
|CA+CcA| > |cA—cA|forall1 <c<k

@ There does not exist a set A such that
|KA + kA| > |kA — KA for all k.
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Questions

Can we extend these results to higher dimensions?

e Forany sy +d; = s, + db, can we find a set A C Z2
such that [s1A — diA| > |$,A — dbA|? Yes!

e Given k € N, can we find a set A ¢ Z? such that
|CA+ cA| > |cA— cA|forall1 < ¢ < k? Yes!

e Can we prove that there does not exist a set A C Z2
such that |kA + kA| > |kA — KA for all k? In some

cases!
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1-Dimensional Constructions

e How did previous SMALL students construct
1-dimensional sets such that |s1A+ diA| > |s2A— dbA|?

@ Recall that fringes are very important, the middle is not
that important.

L=1[0,2k + 1]\ ({2} U [k + 2, 2K])
R=1[0,2k+ 2]\ ({3} U [k + 3,2k + 1])

90+000 ittt §08- /\ 88—t 040004000

e The fringes maintain their shape when added and
subtracted, but after enough additions and
subtractions, the middle will cover the holes in the

fringes.
A
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2-Dimensional Constructions

How do the 1-dimensional constructions generalize to
2-dimensions?

20 40 60 80 100 120

Figure: 2-dimensional generalized MSTD set
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2-Dimensional Constructions

How do the 1-dimensional constructions generalize to
2-dimensions?
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Figure: Zooming into the fringe in the corner
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k-Generational Sets

@ Using this construction, for sy + d; = so + db = k we
can find a set A C Z? such that
|S1A — d1A| > |52A — d2A|

@ We can prove that for any x; + y1 = X + y» # Kk, we
have |X1A — y1A| = ’XZA — ygA’

@ We can then use these sets to create a set A’ C Z2
such that |cA' 4+ cA’| > |cA' — cA|forall1 < c < k.
These sets are known as k-generational.

@ To construct k-generational sets, we will need to
introduce base expansion.
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Base Expansion

Idea behind base expansion:

e For sets A, B C Z? and m < N sufficiently large (relative
to A) we define:
C=m-A+B
e We have proved

ISC — dC| = |sA — dA| - |sB — dB].
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k-Generational Existence

Recall: A set A such that |cA+ cA| > |cA — cA| for all
1 < ¢ < k is k-generational.

For each i, choose A; with |iA; + iA;| > |iA; — iAi| and |jA;
+ JAil = jAi — JAil.

Define A = A + mAs + mPAs + - - - + mf1A.
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k-Generational Existence

Define A = A + mAs + mPAs + - - - + mK1A..

k
JA+JA = ] UA +/Al
i=1
= A+ Al [T 1A+ /A
i#i
= A+ Al T 1A - Al
i#]
> A — Al T 1A - A
i

= [JA-JAl.
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Limiting Behavior of kA

Are there any 2-dimensional sets such that
|KA + KA| > |KA — KA| for all k € N?

First we have to describe the behavior of KA.

Theorem (Nathanson)

LetA={ao, a,...,ax} be afinite set of integers with
a=0<a <---<ap=aand(a,a,...,an)=1. Then
there exists non-negative integers ¢ and d and sets

C c [0,c—2] and D c [0,d — 2] such that for all k > a®m,

kA = CU|[c,ka—d|Uka— D
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Limiting Behavior of kA

Theorem

Let A C 72. Let a and b be the smallest non-zero x and y
coordinates, & and b’ be the largest x and y coordinates,
and N = max{2a?,2b?}. If (a,d) = 0, (b,t') = 0, and
{(0,0),(a,0),(0,b),(a,0),(0,b), (a,b),
(a,b),(d,b),(ad,b)} C A, then for k > N and for some
constants C, ¢, ¢, we have |kA| = k?ab’ — C — ¢k — cok

v
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Limiting Behavior of kA

We want to show for sufficiently large k, the amount of
elements missing from kA grows linearly.
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KA — KA| > |kA + KA

Theorem

Let A C 72. Let a and b be the smallest non-zero x and y
coordinates, & and b’ be the largest x and y coordinates,
and N = max{2a?,2b?}. If (a,d) = 0, (b,t') = 0, and
{(0,0),(a,0),(0,b),(&,0),(0,b),(a,b),
(a,b),(d,b),(ad,b)} C A, then fork > N, we have

|KA — KA| > |KA + KA.
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kA — KA| > |kA + kA

We want to show |kA — kA| > |kA + KA.
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d-Dimensional Constructions

What does the middle look like in d-dimensions?
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d-Dimensional Constructions

What do the fringes look like in d-dimensions?
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Other 2-Dimensional Constructions

Needs to have integer vertices and be locally point
symmetric.

Parallelogram with slope m.

Define ¢ : 72 — Z2 by p(x,y) = (x + my, y).

i
i

Figure: The generalized MSTD set for k = 4, n =130, 51 = 4,
di =0, s, =2, and d» = 2 that has been sheared with slope m = 1

Py TS
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Parallelogram d-Dimensional Constructions

e d(d — 1)/2 positive directions to shear the set
@ d(d —1)/2 slopes:
My, M2, ..., Mg, Moz, ...,Mog,...,My_ 14
(m; is the jth axis sheared in the ith direction)
e We define v : Z2 — 7Z2d by

¢(X1 , Xo, ... 7Xd) = (X1 + MioXo + Mi3Xz + ...+ My gXyg,
Xo+ Mo3Xg+ ...+ MogXyg,... ,Xd).
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Future Directions

@ We have shown the elements missing from kA grows
linearly for certain A

@ In the future: show that the elements missing from kA
grows linearly for all A

@ Previous work in 1-dimensions has shown positive
percentages for generalized MSTD sets, chains of
generalized MSTD sets, and k-generational sets

o In the future: Show positive percentages for
d-dimensional sets
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