ackground	Generalized MSTD	Generations 0000000000	Other Constructions	Conclusion
	Construction Sets in I	ns of Genei Higher Dim	ralized MSTD ensions	

John Haviland¹, Elena Kim², Fernando Trejos Suárez³

1. University of Michigan, 2. Pomona College, 3. Yale University

1. havijw@umich.edu, 2. elena.kim@pomona.edu, 3. fernando.trejos@yale.edu

Advisors: Steven J Miller (sjml@williams.edu)

http://web.williams.edu/Mathematics/sjmiller/public_html/math/talks/talks.html

YMC, Ohio State University

Background ●oooo	Generalized MSTD	Generations 0000000000	Other Constructions	Conclusion

Background

Background o●ooo	Generalized MSTD	Generations 000000000	Other Constructions	Conclusion
Definitions				

A is finite set in \mathbb{Z}^d , |A| is its size. Define

• Sumset:
$$A + A = \{a_i + a_j : a_i, a_j \in A\}.$$

• Difference set:
$$A - A = \{a_i - a_j : a_i, a_j \in A\}$$
.

Definition

Difference dominated: |A - A| > |A + A|Balanced: |A - A| = |A + A|Sum dominated (or MSTD): |A + A| > |A - A|.

Background oo●oo	Generalized MSTD	Generations	Other Constructions	Conclusion
Motivation				

We often care about the sumset /difference set of $A \subseteq \mathbb{Z}$.

• Goldbach's Conjecture: $E \subseteq P + P$

• Fermat's Last Theorem: If A_n is the set of positive *n*-th powers, then $(A_n + A_n) \cap A_n = \emptyset$ for all $n \ge 3$

Natural question: What are the sizes of the sumsets/difference sets?

Background ooo●o	Generalized MSTD	Generations	Other Constructions	Conclusion
History				

How big do we expect the sumset to be? How big do we expect the difference set to be?

•
$$x + y = y + x$$
 and $x - y \neq y - x$.

Conway's MSTD set: $A = \{0, 2, 3, 4, 7, 11, 12, 14\}$

Nathanson, Problems in Additive Number Theory: "With the right way of counting the vast majority of sets satisfy |A - A| > |A + A|."

Background oooo●	Generalized MSTD	Generations	Other Constructions	Conclusion
History				

Martin-O'Bryant: A positive percentage of sets $A \subset [0, n-1]$ are MSTD as $n \to \infty$.

Zhao: The percentage approaches a limit and

$$\lim_{n\to\infty}\frac{\#\{A\subseteq [0,n-1];\ A \text{ is sum-dominant}\}}{2^n}>0.000428.$$

Background	Generalized MSTD ●oooooo	Generations	Other Constructions	Conclusion

Generalized MSTD

- Say $A \subseteq [0, n]$, then $x \in A + A$ if we can find $a_1, a_2 \in A$ such that $a_1 + a_2 = x$.
- The number of pairs in [0, *n*] that sum to *x* is large, except when *x* is near 0 or 2*n*.
- With high probability, the middle will be full, but the fringes will be missing elements
- As the fringes in the sumset and difference set are made by fringes in the original set, the trick is to control the fringes.

Background	Generalized MSTD 00●0000	Generations 000000000	Other Constructions	Conclusion
Definitions				

We generalize the idea of sumsets and difference sets:

$$sA - dA = \underbrace{A + \cdots + A}_{s \text{ times}} - (\underbrace{A + \cdots + A}_{d \text{ times}}),$$

 $a_1 + \cdots + a_s - (a_{s+1} + \cdots + a_{s+d}) \in sA - dA.$

Previous work by SMALL REU students showed

- For any $s_1 + d_1 = s_2 + d_2$, there exists a set A such that $|s_1A d_1A| > |s_2A d_2A|$
- For any $k \in \mathbb{N}$, there exists a set A such that |cA + cA| > |cA cA| for all $1 \le c \le k$
- There does not exist a set A such that |kA + kA| > |kA kA| for all k.

Can we extend these results to higher dimensions?

- For any $s_1 + d_1 = s_2 + d_2$, can we find a set $A \subset \mathbb{Z}^2$ such that $|s_1A - d_1A| > |s_2A - d_2A|$? Yes!
- Given $k \in \mathbb{N}$, can we find a set $A \subset \mathbb{Z}^2$ such that |cA + cA| > |cA cA| for all $1 \le c \le k$? Yes!
- Can we prove that there does not exist a set A ⊂ Z² such that |kA + kA| > |kA - kA| for all k? In some cases!

Background	Generalized MSTD	Generations 000000000	Other Constructions	Conclusion

1-Dimensional Constructions

- How did previous SMALL students construct
 1-dimensional sets such that |s₁A + d₁A| > |s₂A d₂A|?
- Recall that fringes are very important, the middle is not that important.

$$L = [0, 2k + 1] \setminus (\{2\} \cup [k + 2, 2k])$$
$$R = [0, 2k + 2] \setminus (\{3\} \cup [k + 3, 2k + 1])$$

• The fringes maintain their shape when added and subtracted, but after enough additions and subtractions, the middle will cover the holes in the fringes.

00000 000000 00000000 0000 000	Background	Generalized MSTD	Generations	Other Constructions	Conclusion
		0000000			

2-Dimensional Constructions

How do the 1-dimensional constructions generalize to 2-dimensions?

Figure: 2-dimensional generalized MSTD set

Background	Generalized MSTD ooooooo●	Generations 000000000	Other Constructions	Conclusion

2-Dimensional Constructions

How do the 1-dimensional constructions generalize to 2-dimensions?

Figure: Zooming into the fringe in the corner

Background	Generalized MSTD	Generations ●000000000	Other Constructions	Conclusion

Generations

Background	Generalized MSTD	Generations o●oooooooo	Other Constructions	Conclusion
k-Genera	tional Sets			

- Using this construction, for $s_1 + d_1 = s_2 + d_2 = k$ we can find a set $A \subset \mathbb{Z}^2$ such that $|s_1A d_1A| > |s_2A d_2A|$.
- We can prove that for any $x_1 + y_1 = x_2 + y_2 \neq k$, we have $|x_1A y_1A| = |x_2A y_2A|$.
- We can then use these sets to create a set A' ⊂ Z² such that |cA' + cA'| > |cA' - cA'| for all 1 ≤ c ≤ k. These sets are known as k-generational.
- To construct *k*-generational sets, we will need to introduce *base expansion*.

Background	Generalized MSTD	Generations oo●ooooooo	Other Constructions	Conclusion
Base Expan	sion			

Idea behind base expansion:

For sets A, B ⊂ Z² and m ∈ N sufficiently large (relative to A) we define:

$$C = m \cdot A + B$$

• We have proved

$$|sC-dC| = |sA-dA| \cdot |sB-dB|$$
 .

Background	Generalized MSTD	Generations ooo●oooooo	Other Constructions	Conclusion
k-Generatio	onal Existence			

Recall: A set *A* such that |cA + cA| > |cA - cA| for all 1 < c < k is *k*-generational.

For each *i*, choose A_i with $|iA_i + iA_i| > |iA_i - iA_i|$ and $|jA_i + jA_i| = |jA_i - jA_i|$.

Define $A = A_1 + mA_2 + m^2A_3 + \cdots + m^{k-1}A_k$.

Background	Generalized MSTD	Generations	Other Constructions	Conclusion
k-Generatio	onal Existence			

Define
$$A = A_1 + mA_2 + m^2A_3 + \cdots + m^{k-1}A_k$$
.

$$|jA + jA| = \prod_{i=1}^{k} |jA_i + jA_i|$$

$$= |jA_j + jA_j| \cdot \prod_{i \neq j} |jA_i + jA_i|$$

$$= |jA_j + jA_j| \cdot \prod_{i \neq j} |jA_i - jA_i|$$

$$> |jA_j - jA_j| \cdot \prod_{i \neq j} |jA_i - jA_i|$$

$$= |jA - jA|.$$

Background	Generalized MSTD	Generations 0000000000	Other Constructions	Conclusion
Limiting B	ehavior of kA			

Are there any 2-dimensional sets such that |kA + kA| > |kA - kA| for all $k \in \mathbb{N}$?

First we have to describe the behavior of kA.

Theorem (Nathanson)

Let $A = \{a_0, a_1, \dots, a_k\}$ be a finite set of integers with $a_0 = 0 < a_1 < \dots < a_m = a$ and $(a_1, a_2, \dots, a_m) = 1$. Then there exists non-negative integers c and d and sets $C \subset [0, c-2]$ and $D \subset [0, d-2]$ such that for all $k \ge a^2m$,

$$kA = C \cup [c, ka - d] \cup ka - D$$

Background	Generalized MSTD	Generations 00000000000	Other Constructions	Conclusion
Limiting Be	havior of kA			

Theorem

Let $A \subset \mathbb{Z}^2$. Let a and b be the smallest non-zero x and y coordinates, a' and b' be the largest x and y coordinates, and $N = \max\{2a'^2, 2b'^2\}$. If (a, a') = 0, (b, b') = 0, and $\{(0,0), (a,0), (0,b), (a',0), (0,b'), (a,b), (a,b'), (a',b), (a',b')\} \subset A$, then for $k \ge N$ and for some constants C, c_1 , c_2 , we have $|kA| = k^2a'b' - C - c_1k - c_2k$.

We want to show for sufficiently large k, the amount of elements missing from kA grows linearly.

Background	Generalized MSTD	Generations ooooooooeo	Other Constructions	Conclusion
kA - kA	$\geq kA + kA $			

Theorem

Let $A \subset \mathbb{Z}^2$. Let a and b be the smallest non-zero x and y coordinates, a' and b' be the largest x and y coordinates, and $N = \max\{2a'^2, 2b'^2\}$. If (a, a') = 0, (b, b') = 0, and $\{(0,0), (a,0), (0,b), (a',0), (0,b'), (a,b), (a,b), (a',b), (a',b), (a',b), (a',b), (a',b), (a',b), (a',b')\} \subset A$, then for $k \geq N$, we have $|kA - kA| \geq |kA + kA|$.

We want to show $|kA - kA| \ge |kA + kA|$.

Background	Generalized MSTD	Generations 000000000	Other Constructions	Conclusion

Other Constructions

Background	Generalized MSTD	Generations	Other Constructions	Conclusion
d-Dimens	ional Construction	ons		

What does the middle look like in *d*-dimensions?

Background	Generalized MSTD	Generations 0000000000	Other Constructions	Conclusion
d-Dimens	ional Constructio	ons		

What do the fringes look like in *d*-dimensions?

Background	Generalized MSTD	Generations	Other Constructions	Conclusion
			00000	

Other 2-Dimensional Constructions

Needs to have integer vertices and be locally point symmetric.

Parallelogram with slope *m*.

Define $\varphi : \mathbb{Z}^2 \to \mathbb{Z}^2$ by $\varphi(x, y) = (x + my, y)$.

Figure: The generalized MSTD set for k = 4, n = 130, $s_1 = 4$, $d_1 = 0$, $s_2 = 2$, and $d_2 = 2$ that has been sheared with slope m = 1

Background	Generalized MSTD	Generations	Other Constructions	Conclusion
Parallelog	ram <i>d</i> -Dimensio	nal Constructio	ons	

- d(d-1)/2 positive directions to shear the set
- *d*(*d* − 1)/2 slopes:

 $m_{1,2}, m_{1,2}, \ldots, m_{1,d}, m_{2,3}, \ldots, m_{2,d}, \ldots, m_{d-1,d}$

 $(m_{i,j}$ is the *j*th axis sheared in the *i*th direction)

• We define $\psi: \mathbb{Z}^2 \to \mathbb{Z}^2 d$ by

$$\psi(x_1, x_2, \dots, x_d) = (x_1 + m_{1,2}x_2 + m_{1,3}x_3 + \dots + m_{1,d}x_d, x_2 + m_{2,3}x_3 + \dots + m_{2,d}x_d, \dots, x_d).$$

Background	Generalized MSTD	Generations	Other Constructions	Conclusion ●○○

Conclusion

Background	Generalized MSTD	Generations 0000000000	Other Constructions	Conclusion 000
Future Dir	ections			

- We have shown the elements missing from *kA* grows linearly for certain *A*
- In the future: show that the elements missing from *kA* grows linearly for all *A*
- Previous work in 1-dimensions has shown positive percentages for generalized MSTD sets, chains of generalized MSTD sets, and *k*-generational sets
- In the future: Show positive percentages for *d*-dimensional sets

Background	Generalized MSTD	Generations	Other Constructions	Conclusion ○○●
Thanks				

Thanks to:

- Our mentor Prof. Steven Miller,
- Williams College,
- Yale University,
- NSF Grants DMS1947438 and DMS1561945,
- YMC Coordinators.