Completeness of Positive Linear Recurrence Sequences

Elżbieta Bołdyriew (eboldyriew@colgate.edu) John Haviland (havijw@umich.edu) Phuc Lam (plam6@u.rochester.edu) John Lentfer (jlentfer@hmc.edu)
Fernando Trejos Suárez (fernando.trejos@yale.edu)
Joint work with Steven J. Miller
The Nineteenth International Conference on Fibonacci Numbers and Their Applications

07/21/2020

Introduction

Positive Linear Recurrence Sequences

Definition

A sequence $\left\{H_{i}\right\}_{i \geq 1}$ of positive integers is a Positive Linear Recurrence Sequence (PLRS) if the following properties hold:

- (Recurrence relation) There are non-negative integers L, c_{1}, \ldots, c_{L} such that

$$
H_{n+1}=c_{1} H_{n}+\cdots+c_{L} H_{n+1-L}
$$

with L, c_{1}, c_{L} positive.

- (Initial conditions) $H_{1}=1$, and for $1 \leq n<L$,

$$
H_{n+1}=c_{1} H_{n}+\cdots+c_{n} H_{1}+1
$$

Positive Linear Recurrence Sequences

- We write $\left[c_{1}, \ldots, c_{L}\right]$ for $H_{n+1}=c_{1} H_{n}+\cdots+c_{L} H_{n-L+1}$.
- For example, for the Fibonacci numbers, we write [1,1]. This definition gives initial conditions $F_{1}=1, F_{2}=2$.
- Despite satisfying positive linear recurrences, the Lucas and Pell numbers are not PLRS, since their initial conditions do not meet the definition.

Introduction to Completeness

Definition

A sequence $\left\{H_{i}\right\}_{i \geq 1}$ is called complete if every positive integer is a sum of its terms, using each term at most once.

- The sequence with the recurrence $[1,3]$ is not complete. Its terms are $\{1,2,5,11, \ldots\}$; you cannot get 4 or 9 as the sequence grows too quickly.
- The Fibonacci sequence $F_{n+1}=F_{n}+F_{n-1}$, with initial conditions $F_{1}=1, F_{2}=2$, is complete (follows from Zeckendorf's Theorem).

The Doubling Sequence

The PLRS [2], which has the recurrence $H_{n+1}=2 H_{n}$, has terms $H_{n}=2^{n-1}$ and is complete because every integer has a binary representation.

Theorem (Brown)

The complete sequence with maximal terms is $H_{n}=2^{n-1}$.

Any PLRS of the form $[1, \ldots, 1,2]$ has the same terms as [2], i.e., $H_{n}=2^{n-1}$.

Brown's Criterion

Theorem (Brown)
A nondecreasing sequence $\left\{H_{i}\right\}_{i \geq 1}$ is complete if and only if $H_{1}=1$ and for every $n \geq 1$,

$$
H_{n+1} \leq 1+\sum_{i=1}^{n} H_{i} .
$$

Can we bound where a sequence must fail Brown's Criterion? We think so!

Conjecture (SMALL 2020)
If a PLRS $H_{n+1}=c_{1} H_{n}+\cdots+c_{L} H_{n+1-L}$ incomplete, then it fails Brown's criterion before the $2 L$-th term.

Families of Sequences

Analyzing Families of Sequences

Theorem (SMALL 2020)
(0 $[1, \underbrace{0, \ldots, 0}_{k}, N]$, is complete if and only if

$$
N \leq\left\lfloor\frac{(k+2)(k+3)}{4}+\frac{1}{2}\right\rfloor .
$$

(2) [1, $, \underbrace{0, \ldots, 0}_{k}, N]$, is complete if and only if

$$
N \leq\left\lfloor\frac{F_{k+6}-(k+5)}{4}\right\rfloor,
$$

where F_{k} is the kth Fibonacci number.

Proof Sketch

Theorem (SMALL 2020)

(1) $[1,0, \ldots, 0, N]$, with k zeros, is complete if and only if

$$
N \leq\left\lfloor\frac{(k+2)(k+3)}{4}+\frac{1}{2}\right\rfloor .
$$

Partial Proof. We sketch that if $N_{\max }=\left[\frac{(k+2)(k+3)}{4}+\frac{1}{2}\right\rfloor$, then the sequence is complete. It is similar for $N<N_{\text {max }}$. With the recurrence relation and Brown's Criterion,

$$
\begin{aligned}
H_{n+1} & =H_{n}+N_{\max } H_{n-k-1} \\
& \leq H_{n}+\left(N_{\max }-1\right) H_{n-k-1}+H_{n-k-2}+\cdots+H_{1}+1
\end{aligned}
$$

By induction, $\left(N_{\max }-1\right) H_{n-k-1} \leq H_{n-1}+\cdots+H_{n-k-1}$, so

$$
\leq H_{n}+\cdots+H_{1}+1 .
$$

Example for $L=6$

By the previous theorem, $[1,0,0,0,0, N]$ is complete for $N \leq 11$.

Question

Does there exist a complete PLRS of length $L=6$ with $N>11$?

Example for $L=6$

Here are the maximal last terms for preserving
completeness for several other sequences of length
$L=6$:

- $[1,0,0,0,0, N]$ is complete for $N \leq 11$.
- $[1,1,0,0,0, N]$ is complete for $N \leq 11$.
- $[1,0,1,0,0, N]$ is complete for $N \leq 12$.
- $[1,0,0,1,0, N]$ is complete for $N \leq 11$.
- $[1,0,0,0,1, N]$ is complete for $N \leq 10$.

Why is $[1,0,1,0,0,12]$ complete, but $[1,0,0,0,0,12]$ is not complete?

Example for $L=6$

Why is $[1,0,1,0,0,12]$ complete, but $[1,0,0,0,0,12]$ is not complete?

- $[1,0,0,0,0,12]$ has terms $\{1,2,3,4,5,6,18,42, \ldots\}$ and so computing the sums $\sum_{i=1}^{n} H_{i}+1$ we see $\{2,4,7,11,16,22,40, \ldots\}$
- $[1,0,1,0,0,12]$ has terms $\{1,2,3,5,8,12,29,61, \ldots\}$ and so computing the sums $\sum_{i=1}^{n} H_{i}+1$ we see $\{2,4,7,12,20,32,61, \ldots\}$
- [1, 1, 1, 0, 0, 12] has terms $\{1,2,4,8,15,28,63, \ldots\}$ and so computing the sums $\sum_{i=1}^{n} H_{i}+1$ we see $\{2,4,8,16,31,59, \ldots\}$

Sequences of Initial Ones

Theorem (SMALL 2020)
If a sequence $[\underbrace{1, \ldots, 1}, \underbrace{0, \ldots, 0}, N]$ is complete with $m \geq 3$, then
$N \leq \frac{1}{2}\left(1+\sum_{i=1}^{k+1} F_{i}^{(m)}+\sum_{i=1}^{k+1-m} F_{i}^{(m)}+\cdots+\sum_{i=1}^{(k+1) \bmod m} F_{i}^{(m)}\right)$
where $F_{i}^{(m)}$ is the m-bonacci sequence, $[\underbrace{1, \ldots, 1}_{m}]$.

Theorem on Adding Ones

Theorem (SMALL 2020)

- For $L \geq 6$, consider the sequence $\left\{H_{n}\right\}$ given by $[1,0, \ldots, 0,1,0, \ldots, 0, M]$. Then, if M is maximal such that $\left\{H_{n}\right\}$ is complete, and N is maximal such that $[1,0, \ldots, 0, N]$ is complete, we have $M \geq N$.
- For a fixed length L, the sequence
$[1, \underbrace{0, \ldots, 0}_{k}, \underbrace{1, \ldots, 1}_{m}, N]$ with m ones has a lower bound on N than the sequence $[1, \underbrace{0, \ldots, 0}_{k-1}, \underbrace{1, \ldots, 1}_{m+1}, N]$.
In particular, if $m<\frac{L}{2}$, the bound is precisely

$$
N \leq\left\lfloor\frac{(L-m)(L+m+1)}{4}+\frac{1}{48} m(m+1)(m+2)(m+3)+\frac{1-2 m}{2}\right\rfloor .
$$

Modifying Sequences

Modifying Coefficients of a PLRS

When studying a PLRS, what modifications to the recurrence coefficients preserve completeness or incompleteness?

Theorem (SMALL 2020)

- If a sequence $\left[c_{1}, \ldots, c_{L-1}, c_{L}\right]$ is complete, then so is $\left[c_{1}, \ldots, c_{L-1}, d_{L}\right]$ for any $d_{L} \leq c_{L}$.
Remark. This is not true for c_{i} in any position.
- If a sequence $[\underbrace{1, \ldots, 1}_{m}, \underbrace{0, \ldots, 0}_{k}, c_{L}]$ is complete and
$c_{L}=2^{k+1}-1,[\underbrace{1, \ldots, 1}_{m}, \underbrace{0, \ldots, 0}_{k}, c_{L}+j]$ is incomplete for any positive integer j.

Modifying Lengths of a PLRS

Theorem (SMALL 2020)

- If a sequence $\left[c_{1}, \ldots, c_{L}\right]$ is incomplete, then so is $\left[c_{1}, \ldots, c_{L-1}+c_{L}\right]$.
- If a sequence $\left[c_{1}, \ldots, c_{L}\right]$ is incomplete, then so is $\left[c_{1}, \ldots, c_{L}, c_{L+1}\right]$ for any $c_{L+1}>0$.

Conjecture (SMALL 2020)
If a sequence $[\underbrace{1, \ldots, 1}_{m}, \underbrace{0, \ldots, 0}_{k}, c_{L}]$ is complete, then so is
$[\underbrace{1, \ldots, 1}_{m+j}, \underbrace{0, \ldots, 0}_{k}, c_{L}]$ for any positive integer j.

Principal Roots

Principal Roots

Theorem (Binet's Formula)

If r_{1}, \ldots, r_{k} are the distinct roots of the characteristic polynomial of a PLRS $\left\{H_{n}\right\}$, then there exist polynomials q_{1}, \ldots, q_{k} such that $H_{n}=q_{1}(n) r_{1}^{n}+\cdots+q_{k}(n) r_{k}^{n}$.

For PLRS, the characteristic polynomial has a unique positive root r_{1} which is the largest in absolute value, called the principal root.

Theorem (SMALL 2020)
If H_{n} is a complete PLRS and r_{1} is its principal root, then
$r_{1} \leq 2$.

Bounding Principal Roots

- If a sequence is complete, $r_{1} \leq 2$.
- There exists a second bound $1<B_{L}<2$ on the principal roots, so that if a sequence is incomplete, the its principal root r_{1} satisfies $r_{1} \geq B_{L . .}$ This bound is dependent on the length of the generating sequence $\left[c_{1}, \ldots, c_{L}\right]$. We conjecture the following:

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $\left[1,0, \ldots, 0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1\right]$.

- If this holds, then for large L, we would have $B_{L} \approx(L / 2)^{2 / L}$. In particular, $\lim _{L \rightarrow \infty} B_{L}=1$.

Root-Bounding Proof Sketch

Conjecture (SMALL 2020)

For any given L, the incomplete sequence of length L with the lowest principal root is $\left[1,0, \ldots, 0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1\right]$.

Suppose $\left[c_{1}, \ldots, c_{L}\right]$ is an incomplete sequence.
Case 1: $\sum_{k=1}^{L} c_{k} \geq 2+\left\lceil\frac{L(L+1)}{4}\right\rceil$
We combine the following two invariant arguments:

- The principal root of $\left[c_{1}, \ldots, c_{L}\right]$ is strictly greater than that of $\left[c_{1}, \ldots, c_{k}-1, \ldots, c_{L}+1\right]$, for any k.
- The principal root of $[1,0, \ldots, 0, S]$ is strictly greater than that of $[1,0, \ldots, 0, S-1]$.
Combining these two, any sequence with large sum can be "reduced" to $\left[1,0, \ldots, 0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1\right]$.

Root-Bounding Proof Sketch

Case 2: $\sum_{k=1}^{L} c_{k} \leq 1+\left\lceil\frac{L(L+1)}{4}\right\rceil$
It can be shown any "counterexample" would fulfill:

- $\forall 1 \leq k \leq L+1$,

$$
\sum_{i=2}^{k} c_{i} \leq\left\lceil\frac{k(k+1)}{4}\right\rceil .
$$

- $\sum_{i=2}^{L} c_{i}\left(\lambda_{L+1}^{L+1-i}-\lambda_{L}^{L-i}\right)<\frac{L+2}{2}$, where λ_{L} is the root of
$[1,0, \ldots, 0,\lceil L(L+1) / 4\rceil+1$.

This forces the coefficients of $\left[c_{1}, \ldots, c_{L}\right]$ to be small enough to force a contradiction; for example, an analytical argument shows the first 32.5% or so must be 0 .

Future Directions

Future Directions

- Extend analysis of the bound of N in $[\underbrace{1, \ldots, 1}_{m}, 0, \ldots, 0, N]$, which involves the m-bonacci numbers, defined by $[\underbrace{1, \ldots, 1}_{m}]$.
- Find the bound N for arbitrary coefficients c_{2}, \ldots, c_{L-1} in $\left[1, c_{2}, \ldots, c_{L-1}, N\right]$.
- Prove the conjectures made in this presentation.

Bibliography

目 Thomas C. Martinez, Steven J. Miller, Clay Mizgerd, and Chenyang Sun. Generalizing Zeckendorf's Theorem to Homogeneous Linear Recurrences, 2020
© Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Steven J. Miller, and Philip Tosteson. The Average Gap Distribution for Generalized Zeckendorf Decompositions, Dec 2012.

国 J. L. Brown. Note on complete sequences of integers. The American Mathematical Monthly, 68(6):557, 1961.

Acknowledgements

- Thank you. Any questions?
- This research was conducted as part of the 2020 SMALL REU program at Williams College. This work was supported by NSF Grant DMS1947438, Williams, Yale, and Rochester.

