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Introduction
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Positive Linear Recurrence Sequences

Definition
A sequence {Hi}i≥1 of positive integers is a Positive
Linear Recurrence Sequence (PLRS) if the following
properties hold:

• (Recurrence relation) There are non-negative
integers L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L

with L, c1, cL positive.
• (Initial conditions) H1 = 1, and for 1 ≤ n < L,

Hn+1 = c1Hn + · · ·+ cnH1 + 1

3



Positive Linear Recurrence Sequences

• We write [c1, . . . , cL] for Hn+1 = c1Hn + · · ·+ cLHn−L+1.

• For example, for the Fibonacci numbers, we write
[1, 1]. This definition gives initial conditions
F1 = 1, F2 = 2.

• Despite satisfying positive linear recurrences, the
Lucas and Pell numbers are not PLRS, since their
initial conditions do not meet the definition.
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Introduction to Completeness

Definition
A sequence {Hi}i≥1 is called complete if every positive
integer is a sum of its terms, using each term at most
once.

• The sequence with the recurrence [1, 3] is not
complete. Its terms are {1, 2, 5, 11, . . . }; you cannot
get 4 or 9 as the sequence grows too quickly.

• The Fibonacci sequence [1, 1], with initial conditions
F1 = 1, F2 = 2, is complete (follows from Zeckendorf’s
Theorem).
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The Doubling Sequence

The PLRS [2], which has the recurrence Hn+1 = 2Hn, has
terms Hn = 2n−1 and is complete because every integer
has a binary representation.

Theorem (Brown)
The complete sequence with maximal terms is Hn = 2n−1.

Proof.
Suppose {Gn} has Gk > 2k−1 for some k. As there are
only 2k−1 − 1 different ways to sum the terms
G1, . . . ,Gk−1, some integer in the set {1, . . . ,Gk − 1}
cannot be written as a sum of terms of {Gn}.
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Brown’s Criterion

Theorem (Brown)
A nondecreasing sequence {Hi}i≥1 is complete if and
only if H1 = 1 and for every n ≥ 1,

Hn+1 ≤ 1+
n∑
i=1

Hi.

• [1, 0, 1, 0, 0, 12] has terms {1, 2, 3, 5, 8, 12, 29, 61, . . . }
and so computing the sums

∑n
i=1 Hi + 1 we see

{2, 4, 7, 12, 20, 32, 61, . . . }
• [1, 1, 1, 0, 0, 12] has terms {1, 2, 4, 8, 15, 28, 63, . . . }
and so computing the sums

∑n
i=1 Hi + 1 we see

{2, 4, 8, 16, 31, 59, . . . }
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Binet’s Formula and Generalizations
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Characteristic Polynomials

Definition
For a PLRS {Hn} defined by [c1, . . . , cL], define the
characteristic polynomial

p(x) = xL −
L∑
i=1

cixL−i.

• By Descartes’s Rule of Signs, p(x) must have precisely
one positive root, which we call its principal root.

• The principal root of the PLRS is always the largest,
i.e., for any root z ∈ C, |z| < r.
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Binet’s Formula

Theorem (Binet)
The terms F1, F2, . . . of the Fibonacci sequence can be
calculated explicitly as

Fn =
1√
5
(
φn − (1− φ)n

)
,

where φ = 1+
√
5

2 denotes the Golden Ratio.

• Note that φ, 1− φ are the roots of the characteristic
polynomial p(x) = x2 − x− 1 of this sequence.

Can we get a similar result for a generic PLRS?
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Generalized Binet’s Formula

Theorem (Generalized Binet’s Formula)
If r1, . . . , rk are the distinct roots of the characteristic
polynomial of a linear recurrence {Hn}, with
multiplicities m1, . . . ,mk, then there exist polynomials
q1, . . . ,qk with deg(qi) ≤ mi − 1 for which

Hn = q1(n)rn1 + . . .+ qk(n)rnk.

• If {Hn} is a PLRS, we can let r1 be its principal root;
since m1 = 1 and for all i, r1 > |ri|, we have that
Hn = O(rn1 ).
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Slow- and Fast-Growing Sequences

• From Generalized Binet’s Formula, we know
Hn = O (rn1 ), so the asymptotic growth of {Hn} is
determined by r1.

• Generally speaking, complete sequences must grow
relatively slowly. Can we relate the size of r1 to
completeness?
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Bounding the Principal Root
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First Bounds on r1

Recall the definition p(x) = xL −
∑L

i=1 cixL−i.

As the constant term cL is a positive integer, we know
r1 > 1; otherwise, as cL =

∏
rmi
i , and for all i ≥ 2, |ri| < r1,

we would have 0 < |cL| < 1.
Lemma (SMALL 2020)
If Hn is a complete PLRS and r1 is its principal root, then
r1 ≤ 2.

Proof.
Otherwise, as Hn = O (rn1 ), for large n our terms would
exceed the maximal sequence {2n−1}.

Note: r1 ≤ 2 is necessary, but not sufficient!
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Is 2 a Useful Bound?

Is 2 the best upper bound for roots of complete
sequences?

• 2 is optimal: we can find complete sequences with
roots of sizes arbitrarily close to 2, and even with
roots of size exactly 2. (Sequences of the form
[1, . . . , 1︸ ︷︷ ︸

m

].)

• Checking r1 ≤ 2 is a fast method to eliminate
candidates for completeness. How to do this
effectively?

• As p(x) = xL −
∑L

i=1 cixL−i has exactly one positive
root, and p(x) > 0 for large x, we see r1 ≤ 2 if and
only if p(2) ≥ 0. This is much faster than checking
Brown’s Criterion! 15



Lower Bound

Lemma (SMALL 2020)
For any L, there exists a second bound BL such that if a
sequence [c1, . . . , cL] is incomplete, then r1 ≥ BL.

Proof.

• There are finitely many sequences [c1, . . . , cL] with
p(2) = 2L −

∑L
i=1 ci2L−i ≥ 0. For example, if any ci > 2i,

we have p(2) < 0.
• There are finitely many incomplete sequences with
r1 ≤ 2, and so we can always find the incomplete
sequence with smallest root - this is BL.

We now aim to determine the precise values of BL. 16



A Few Combinatorial Results

Theorem (SMALL 2020)
If [c1, . . . , cL] is any incomplete sequence, then the
sequence [c1, . . . , cL−1 + cL] is also incomplete.

Theorem (SMALL 2020)
If a sequence [c1, . . . , cL−1, cL] is complete, then so is
[c1, . . . , cL−1,dL] for any 1 ≤ dL ≤ cL.
Remark. This is not true for ci in an arbitrary position.

Both can be proven by working directly with Brown’s
Criterion.
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The Minimal Incomplete Sequence

Theorem (SMALL 2020)
[1, 0, . . . , 0︸ ︷︷ ︸

L−2

,N], is complete if and only if

N ≤
⌈
L(L+ 1)

4

⌉
.

Conjecture (SMALL 2020)
For any given L, the incomplete sequence of length L
with the lowest principal root is [1, 0, . . . , 0,

⌈
L(L+1)
4

⌉
+ 1].

• We denote by λL the principal root of
[1, 0, . . . , 0,

⌈
L(L+1)
4

⌉
+ 1]. The conjecture is equivalent

to saying λL = BL, for all L.
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Arbitrarily Small Incomplete Roots

Even in the event the conjecture is false, asymptotic work
on the λL gives us useful information for the bound BL.

Theorem (SMALL 2020)
For L ∈ Z+, let λL be the sole positive root of

pL(x) = xL − xL−1 −
⌈
L(L+ 1)

4

⌉
.

Then, for any L, λL > λL+1. Additionally, limL→∞ λL = 1.

Both of these results can be computed algebraically.

This shows limL→∞ BL = 1, so we can get incomplete
sequences that grow arbitrarily slowly. If our conjecture
holds, then we get the specific asymptotic behavior L,
BL ≈ (L/2)2/L.
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Proving the Conjecture

We first show any sequence [c1, . . . , cL] where
∑
ci is

sufficiently large must have root greater than λL.

Case 1:
∑L

k=1 ck ≥ 2+
⌈
L(L+1)
4

⌉
We combine the following two invariant arguments:

• The principal root of [c1, . . . , cL] is strictly greater than
that of [c1, . . . , ck − 1, . . . , cL + 1], for any k.

• The principal root of [1, 0, . . . , 0, S] is strictly greater
than that of [1, 0, . . . , 0, S− 1].

Combining these two, any sequence with large sum can
be ”reduced” to [1, 0, . . . , 0,

⌈
L(L+1)
4

⌉
+ 1].
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Inducting for the General Case

Conjecture
If [c1, . . . , cL] is an incomplete sequence with∑L

i=1 ci ≤
⌈
L(L+1)
4

⌉
+ 2, then its principal root is at least

λL.

Base Case: For L = 2, we see ⌈L(L+ 1)/4⌉+ 1 = 3, and so
we consider [c1, c2] with c1 + c2 ≤ 4. The only incomplete
sequences here are [2, 1], [2, 2], [1, 3], [3, 1], with roots
2.414, 2.731, 2.303, 3.303. The smallest corresponds to
[1, 3] = [1, ⌈(2 · 3)/4⌉+ 1], and so the Lemma holds.
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Inducting for the General Case

We use strong induction. Suppose the lemma holds for
all lengths up to L, and let [c1, . . . , cL, cL+1] be an
incomplete sequence with

∑L+1
i=1 ci ≤

⌈
(L+1)(L+2)

4

⌉
+ 2.

• We can show analytically that the root of
[c1, . . . , cL, cL+1] is greater than that of [c1, . . . , cL]. Thus
if [c1, . . . , cL] is incomplete, its root exceeds λL by
induction hypothesis, and so the root of
[c1, . . . , cL, cL+1] exceeds λL+1.

• If
∑L

i=1 ci > ⌈L(L+ 1)/4⌉+ 2, a similar argument
shows the root of [c1, . . . , cL, cL+1] exceeds λL+1.

Thus we are reduced to the case where [c1, . . . , cL] is
complete and has

∑L
i=1 ci ≤ ⌈L(L+ 1)/4⌉+ 2.
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Remaining Case

We we have reduced this to the case where [c1, . . . , cL] is
complete and has

∑L
i=1 ci ≤ ⌈L(L+ 1)/4⌉+ 2, yet

[c1, . . . , cL, cL+1] is incomplete. As [c1, . . . , ck] has root
below λk for all k, we at least have that for any
1 ≤ k ≤ L+ 1, ∑k

i=2 ci ≤
⌈
k(k+1)
4

⌉
+ 1.

If [c1, . . . , cL, cL+1] is incomplete, then by previous result,
[c1, . . . , cL + cL+1] is incomplete too. Thus root of
[c1, . . . , cL + cL+1] exceeds λL, yet root of [c1, . . . , cL, cL+1] is
below λL+1, from which we get

L∑
i=2

ci
(
λL+1−iL+1 − λL−iL

)
<
L+ 2
2 .
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Remaining Case

Using the bound
L∑
i=2

ci
(
λL+1−iL+1 − λL−iL

)
<
L+ 2
2 ,

we see through asymptotic work that this forces the first
32.5% of the ci to be 0 (excluding c1).

All experimental evidence for values of L up to 30 suggest
that under these conditions, [c1, . . . , cL, cL+1] is only
incomplete for huge values of cL+1: much too big for the
bounds on

∑
ci to hold.

[1, 0, . . . , 0︸ ︷︷ ︸
19

, 116] [1, 0, . . . , 0︸ ︷︷ ︸
9

, 32, 0, . . . , 0︸ ︷︷ ︸
9

, 2932].
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Denseness of Principal Roots in [1, 2]
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Denseness of Incomplete Roots

Theorem (SMALL 2020)
For any L ∈ Z+, let RL be the set of roots of all
incomplete PLRS of length L. Then, for any ε > 0, there
exists an M such that for all L > M, for any ε-ball
Bε ⊂ [1, 2], Bε ∩ RL ̸= ∅.

Corollary
The set R =

⋃∞
L=1 RL of all principal roots of incomplete

sequences is dense in [1, 2].
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Proof of Denseness Theorem

We use the fact that the λL roots are decreasing and
fulfill limL→∞ λL = 1.
Proof.
We analyze the set of the roots of the following list of
incomplete sequences:

[1, 0, . . . , 0,
⌈
L(L+1)
2

⌉
+ 1], [1, 0, . . . , 0,

⌈
L(L+1)
2

⌉
+ 2], . . . , [1, 0, . . . , 0, 2L]

We know the root of the first sequence approaches 1.
We can show that the roots of consecutive sequence
increase at a decreasing rate. Thus for λL < 1+ ε, we
see roots are going up by at most ε. Since the root of
the last sequence exceeds 2, the roots will go through
every ε-ball in (1, 2). 27



Denseness of Complete Roots

Conjecture (SMALL 2020)
Let C be the set of roots of complete PLRS. Then, C is
dense in the interval (1, 2).

• Although we have not been able to prove this
rigorously, it seems that a similar argument as before
is possible, only considering a different set of
sequences, namely those of the form

[1, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
m

,N].
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Conclusion
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Conclusion

Here, we have developed:

• A much more computationally efficient way to check
completeness for most sequences. Bounding root
size is O

(
L2
)
as it amounts to evaluating polynomial,

checking Brown’s Criterion is a O
(
2L
)
problem.

• A narrowing-down to the precise interval where
complete and incomplete sequences interact.

• Proof that complete and incomplete sequences are
evenly spread out throughout that interval.

Future Work: Proving the remaining conjectures in the
presentation.
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Proof of Brown’s Criterion

Theorem (Brown)
If an is a nondecreasing sequence, then an is complete if
and only if a1 = 1 and for all n > 1,

an+1 ≤ 1+
n∑
i=1

ai.

Proof. Let {an}∞n=1 be a sequence of positive integers, not
necessarily distinct, such that a1 = 1 and

an+1 ≤ 1+
n∑
i=1

ai

for n ∈ {1, 2, . . .}. Then for 0 < n < 1+
∑k

i=1 ai there exists
{bi}ki=1, bi ∈ {0, 1} such that n =

∑k
i=1 biai. 33



Proof of Brown’s Criterion

We proceed by induction on k. The claim clearly holds for
k = 1, so assume that it holds for some k = N. Hence, we
must show that 0 < n < 1+

∑N+1
i=1 ai implies the existence

of {γi}N+1i=1 , γi ∈ {0, 1} such that n =
∑N+1

i=1 γiai. Due to the
inductive hypothesis, we only consider values satisfying

1+
N∑
i=1

ai ≤ n < 1+
N+1∑
i=1

ai.

Note that

n− aN+1 ≥ 1+
N∑
i=1

ai − aN+1 ≥ 0

by assumption. Now, if n− aN+1 = 0, the conclusion
follows.
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Proof of Brown’s Criterion

Otherwise,

0 < n− aN+1 < 1+
N∑
i=1

ai

implies the existence of {bi}Ni=1 such that
n− aN+1 =

∑N
i=1 biai. Then the result is immediate on

transposing aN+1 and identifying γi = bi for i ∈ {1, . . . ,N}
and γN+1 = 1. This completes the sufficiency part of the
proof.
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Proof of Brown’s Criterion

For the necessity, assume that there exists n0 ≥ 1 such
that an0+1 ≥ 1+

∑n0
i=1 ai. Then, however,

an0+1 > an0+1 − 1 >
n0∑
i=1

ai,

which implies that the positive integer an0+1 − 1 cannot
be represented in the form

∑k
i=1 biai. This leads to a

contradiction and completes the proof.
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