Introduction to Completeness of Generalized Fibonacci Sequences

Elżbieta Bołdyriew (eboldyriew@colgate.edu)
John Haviland (havijw@umich.edu)
Phúc Lâm (plam6@u.rochester.edu)
John Lentfer (jlentfer@hmc.edu)
Fernando Trejos Suárez (fernando.trejos@yale.edu)
Advised by: Steven J. Miller (sjm1@williams.edu)
Research conducted as part of the 2020 SMALL Research Experience for
Undergraduates at Williams College
Combinatorial and Additive Number Theory (CANT 2021)
05/26/21

Introduction

Motivation

- Positive linear recurrence sequences (PLRS) generalize the Fibonacci numbers in Zeckendorf's theorem.
- Complete sequences can be used to to express integers using sums of terms.

Research Question

How can we determine whether a PLRS is complete based on the coefficients in its defining recurrence relation?

Positive Linear Recurrence Sequences

Definition

A sequence $\left\{H_{i}\right\}_{i \geq 1}$ of positive integers is a Positive Linear Recurrence Sequence (PLRS) if:

- (Recurrence relation) There are non-negative integers L, c_{1}, \ldots, c_{L} such that

$$
H_{n+1}=c_{1} H_{n}+\cdots+c_{L} H_{n+1-L}
$$

with L, c_{1}, c_{L} positive.

- (Initial conditions) $H_{1}=1$, and for $1 \leq n \leq L$,

$$
H_{n+1}=c_{1} H_{n}+\cdots+c_{n} H_{1}+1
$$

Positive Linear Recurrence Sequences

- Write $\left[c_{1}, \ldots, c_{L}\right]$ for $H_{n+1}=c_{1} H_{n}+\cdots+c_{L} H_{n-L+1}$.
- Fibonacci numbers: $[1,1]$. Initial conditions
$F_{1}=1, F_{2}=2$.
- (Lucas and Pell numbers are not PLRS, due to initial conditions).

Introduction to Completeness

Definition

A sequence $\left\{H_{i}\right\}_{i \geq 1}$ is complete if every positive integer is a sum of its terms, using each term at most once.

- The sequence $[1,3]$ is not complete. Its terms are $\{1,2,5,11, \ldots\}$; you cannot get 4 or 9 .
- The Fibonacci sequence is complete (follows from Zeckendorf's Theorem).

The Doubling Sequence $H_{n+1}=2 H_{n}$

The PLRS [2] has terms $H_{n}=2^{n-1}$, i.e., $\{1,2,4,8, \ldots\}$, and is complete (every integer has a binary representation).

Theorem (Brown)

The complete sequence with maximal terms is $H_{n}=2^{n-1}$.

Any PLRS of the form $[1, \ldots, 1,2]$ has the same terms as [2], i.e., $H_{n}=2^{n-1}$.

Brown's Criterion

Theorem (Brown)
A nondecreasing sequence $\left\{H_{i}\right\}_{i \geq 1}$ is complete if and only if $H_{1}=1$ and for every $n \geq 1$,

$$
H_{n+1} \leq 1+\sum_{i=1}^{n} H_{i}
$$

Definition

The \boldsymbol{n}-th Brown's Gap of a sequence $\left\{H_{i}\right\}_{i \geq 1}$ is

$$
B_{H, n}:=1+\left(\sum_{i=1}^{n-1} H_{i}\right)-H_{n}
$$

Modifying Sequences

Example for $L=6$

Example
 $[1,0,0,0,0, N]$ is complete if and only if $N \leq 11$.

Question

Is there another choice of coefficients $\left[c_{1}, \ldots, c_{5}, N\right]$, that generates a complete PLRS, with some $N>11$?

Example for $L=6$

- $[1,0,0,0,0, N]$ is complete for $N \leq 11$.
- $[1,1,0,0,0, N]$ is complete for $N \leq 11$.
- $[1,0,1,0,0, N]$ is complete for $N \leq 12$.
- $[1,0,0,1,0, N]$ is complete for $N \leq 11$.
- $[1,0,0,0,1, N]$ is complete for $N \leq 10$.

Why is $[1,0,1,0,0,12]$ complete, but $[1,0,0,0,0,12]$ is not complete?

Example for $L=6$

Why is $[1,0,1,0,0,12]$ complete, but $[1,0,0,0,0,12]$ is not complete?

- [1, $0,0,0,0,12]$ has terms $\{1,2,3,4,5,6,18,42, \ldots\}$ and so computing $1+\sum_{i=1}^{n} H_{i}$ we see $\{2,4,7,11,16,22,40, \ldots\}$
- [1, 0, $1,0,0,12$] has terms $\{1,2,3,5,8,12,29,61, \ldots\}$ and so computing $1+\sum_{i=1}^{n} H_{i}$ we see $\{2,4,7,12,20,32,61, \ldots\}$
- [1, $1,1,0,0,12]$ has terms $\{1,2,4,8,15,28,63, \ldots\}$ and so computing $1+\sum_{i=1}^{n} H_{i}$ we see $\{2,4,8,16,31,59, \ldots\}$

Modifying Coefficients of a PLRS

What modifications to the coefficients preserve completeness or incompleteness?

Theorem (SMALL 2020)

$$
\begin{aligned}
& \text { If }\left[c_{1}, \ldots, c_{L}\right] \text { is any incomplete sequence, then the sequence } \\
& {\left[c_{1}, \ldots, c_{L-2}, c_{L-1}+c_{L}\right] \text { is also incomplete. }}
\end{aligned}
$$

Theorem (SMALL 2020)

If a sequence $\left[c_{1}, \ldots, c_{L-1}, c_{L}\right]$ is complete, then so is $\left[c_{1}, \ldots, c_{L-1}, d_{L}\right]$ for any $1 \leq d_{L} \leq c_{L}$.
Remark. Not true for c_{i} in an arbitrary position.

We discuss bounds for the last coefficient.

Families of Sequences

Analyzing Families of Sequences

Theorem (SMALL 2020)

- $[1, \underbrace{0, \ldots, 0}_{k}, N]$, is complete if and only if

$$
N \leq\left\lfloor\frac{(k+2)(k+3)}{4}+\frac{1}{2}\right\rfloor .
$$

- $[1,1, \underbrace{0, \ldots, 0}_{k}, N]$, is complete if and only if

$$
N \leq\left\lfloor\frac{F_{k+6}-(k+5)}{4}\right\rfloor,
$$

where F_{k} is the k th Fibonacci number.

Proof Sketch

Theorem

$[1,0, \ldots, 0, N]$, with k zeros, is complete if and only if $N \leq\left\lfloor\frac{(k+2)(k+3)}{4}+\frac{1}{2}\right\rfloor$.

Partial Proof. We sketch that if $N_{\max }=\left\lfloor\frac{(k+2)(k+3)}{4}+\frac{1}{2}\right\rfloor$, then the sequence is complete.
With the recurrence relation and Brown's criterion,

$$
\begin{aligned}
H_{n+1} & =H_{n}+N_{\max } H_{n-k-1} \\
& \leq H_{n}+\left(N_{\max }-1\right) H_{n-k-1}+H_{n-k-2}+\cdots+H_{1}+1
\end{aligned}
$$

By induction, $\left(N_{\max }-1\right) H_{n-k-1} \leq H_{n-1}+\cdots+H_{n-k-1}$, so

$$
\leq H_{n}+\cdots+H_{1}+1 .
$$

Figure 1: $[1, \underbrace{0, \ldots, 0}_{k}, 1, \underbrace{0, \ldots, 0}_{g}, N]$ with location of middle one varying, where each color represents a fixed length L.

Theorem on Switching Ones

Theorem (SMALL 2020)

Let $L \geq 6$ fixed and $\left\{H_{n}\right\}=[1, \underbrace{0, \ldots, 0}_{L-g-3}, 1, \underbrace{0, \ldots, 0}_{g}, M]$, $0<g \leq L-3$. If M is maximal such that $\left\{H_{n}\right\}$ is complete, and N is maximal such that $[1,0, \ldots, 0, N]$ is complete, $M \geq N$.

In particular,

- $[1,0, \ldots, 0,0,1, M]$ is complete if and only if $M \leq N-1$
- $[1,0, \ldots, 0,1,0, M]$ is complete if and only if $M \leq N$.

Figure 2: $[\underbrace{1, \ldots, 1}_{g}, \underbrace{0, \ldots, 0}_{k}, N]$ with k and g varying, where each color represents a fixed k.

Sequences of Initial Ones

Theorem (SMALL 2020)

If a sequence $[\underbrace{1, \ldots, 1}_{g}, \underbrace{0, \ldots, 0}_{k}, N]$ is complete with $g \geq 3$,
then

$$
N \leq \frac{1}{2}\left(1+\sum_{i=1}^{k+1} F_{i}^{(g)}+\sum_{i=1}^{k+1-g} F_{i}^{(g)}+\cdots+\sum_{i=1}^{(k+1) \bmod g} F_{i}^{(g)}\right)
$$

where $F_{i}^{(g)}$ is the g-bonacci sequence, $[\underbrace{1, \ldots, 1}_{g}]$.

Sequences of Initial Ones

Conjecture (SMALL 2020)
If a sequence $[\underbrace{1, \ldots, 1}_{g}, \underbrace{0, \ldots, 0}_{k}, N]$ is complete, then so is
$[\underbrace{1, \ldots, 1}_{g+j}, \underbrace{0, \ldots, 0}_{k}, N]$ for any positive integer j.
Theorem (SMALL 2020)
Consider $[\underbrace{1, \ldots, 1}_{g}, \underbrace{0, \ldots, 0}_{k}, N]$.

- For $g \geq k+\left\lceil\log _{2} k\right\rceil$, the bound on N is $N \leq 2^{k+1}-1$
- For $k \leq g<k+\left\lceil\log _{2} k\right\rceil$, the bound on N is

$$
N \leq 2^{k+1}-\left\lceil\frac{k}{2^{g-k}}\right\rceil
$$

The $2 L-1$ conjecture

The $2 L-1$ conjecture

Can we bound where a sequence must fail Brown's Criterion? We think so!

Conjecture (SMALL 2020)

If a PLRS $H_{n+1}=c_{1} H_{n}+\cdots+c_{L} H_{n+1-L}$ incomplete, then it fails Brown's criterion before the 2 L -th term.

The closest we've gotten:

Theorem (SMALL 2020)

The PLRS $\left\{H_{i}\right\}_{i \geq 1}$ generated by $\left[c_{1}, \ldots, c_{L}\right]$ is complete if

$$
\left\{\begin{array}{l}
B_{H, n} \geq 0,1 \leq n<L \\
B_{H, n}>0, L \leq n \leq 2 L-1
\end{array}\right.
$$

Figure 3: $[1, \underbrace{0, \ldots, 0}_{k}, \underbrace{1, \ldots, 1}_{m}, N]$ with number of ones (m) varying, depending on L.

Conditional result on Adding Ones

If the $2 L-1$ conjecture holds, we have the following:

Theorem (SMALL 2020)

For a fixed length L, the sequence $[1, \underbrace{0, \ldots, 0}_{k}, \underbrace{1, \ldots, 1}_{m}, N]$ with m ones has a lower bound on N than the sequence $[1, \underbrace{0, \ldots, 0}_{k-1}, \underbrace{1, \ldots, 1}_{m+1}, N]$.
In particular, if $m<\frac{L}{2}$, the bound is precisely

$$
N \leq\left\lfloor\frac{(L-m)(L+m+1)}{4}+\frac{1}{48} m(m+1)(m+2)(m+3)+\frac{1-2 m}{2}\right\rfloor
$$

Binet's Formula and Generalizations

Characteristic Polynomials

Definition

For a PLRS $\left\{H_{n}\right\}$ defined by $\left[c_{1}, \ldots, c_{L}\right]$, define the characteristic polynomial

$$
p(x)=x^{L}-\sum_{i=1}^{L} c_{i} x^{L-i}
$$

- By Descartes's Rule of Signs, $p(x)$ there is one positive real root, the principal root.
- The principal root is always the largest: for any root $z \in \mathbb{C},|z|<r$.

Generalized Binet's Formula

Theorem (Generalized Binet's Formula)

If r_{1}, \ldots, r_{k} are the roots of the polynomial of a linear recurrence $\left\{H_{n}\right\}$ with multiplicities m_{1}, \ldots, m_{k}, there are polynomials q_{1}, \ldots, q_{k} with $\operatorname{deg}\left(q_{i}\right) \leq m_{i}-1$ such that

$$
H_{n}=q_{1}(n) r_{1}^{n}+\ldots+q_{k}(n) r_{k}^{n} .
$$

- If $\left\{H_{n}\right\}$ is a PLRS, let r_{1} be the principal root; since $m_{1}=1$ and for all $i, r_{1}>\left|r_{i}\right|$, then $H_{n}=\Theta\left(r_{1}^{n}\right)$.
- Complete sequences should grow "slowly". Can we relate the size of r_{1} to completeness?

Bounding the Principal Root

First Bounds on r_{1}

Recall $p(x)=x^{L}-\sum_{i=1}^{L} c_{i} x^{L-i}$.
As $c_{L} \geq 1$, we know $r_{1}>1$. $\left(c_{L}=\prod r_{i}^{m_{i}}\right.$, and r_{1} is the biggest root by magnitude).

Lemma (SMALL 2020)

If H_{n} is a complete PLRS and r_{1} is its principal root, then $r_{1} \leq 2$.

Proof.

Otherwise, as $H_{n}=\Theta\left(r_{1}^{n}\right)$, for large n our terms would exceed the maximal sequence $\left\{2^{n-1}\right\}$.

Note: there are incomplete sequences with principal roots $r \leq 2$.

Is 2 a Useful Bound?

- We can find complete sequences with roots of sizes arbitrarily close to 2 . (Sequences of the form $[\underbrace{1, \ldots, 1}_{L}]$.)
- Checking $r_{1} \leq 2$ is a fast method to eliminate candidates for completeness.
- $p(x)=x^{L}-\sum_{i=1}^{L} c_{i} x^{L-i}$ has one positive real root, and $p(x)>0$ for large x, so $r_{1} \leq 2$ if and only if $p(2) \geq 0$. This is much faster than checking Brown's Criterion!

Lower Bound

Lemma (SMALL 2020)

For any L, there exists a second bound B_{L} such that if a sequence $\left[c_{1}, \ldots, c_{L}\right]$ is incomplete, then $r_{1} \geq B_{L}$.

Proof.

- There are finitely many sequences $\left[c_{1}, \ldots, c_{L}\right]$ with

$$
p(2)=2^{L}-\sum_{i=1}^{L} c_{i} 2^{L-i} \geq 0
$$

- Hence finitely many incomplete sequences with $r_{1} \leq 2$, so just find the minimum root - B_{L}.

We now aim to determine the precise values of B_{L}.

The Minimal Incomplete Sequence

Theorem (SMALL 2020)

$[1, \underbrace{0, \ldots, 0}_{L-2}, N]$, is complete if and only if

$$
N \leq\left\lceil\frac{L(L+1)}{4}\right\rceil
$$

Conjecture (SMALL 2020)
For any L, the incomplete sequence of length L with smallest principal root is $\left[1,0, \ldots, 0,\left\lceil\frac{L(L+1)}{4}\right\rceil+1\right]$.

- Let λ_{L} the principal root of $\left[1,0, \ldots, 0,\left[\frac{L(L+1)}{4}\right\rceil+1\right]$. This is saying $\lambda_{L}=B_{L}$, for all L.

Denseness of Incomplete Roots

Theorem (SMALL 2020)

For any $L \in \mathbb{Z}^{+}$, let R_{L} be the set of roots of all incomplete PLRS of length L. Then, for any $\varepsilon>0$, there exists an M such that for all $L>M$, for any ε-ball $B_{\varepsilon} \subset[1,2]$, $B_{\varepsilon} \cap R_{L} \neq \varnothing$.

Corollary

The set $R=\bigcup_{L=1}^{\infty} R_{L}$ of all principal roots of incomplete sequences is dense in $[1,2]$.

Bibliography

R Olivia Beckwith, Amanda Bower, Louis Gaudet, Rachel Insoft, Shiyu Li, Steven J. Miller, and Philip Tosteson. The Average Gap Distribution for Generalized Zeckendorf Decompositions, Dec 2012.
围 J. L. Brown. Note on complete sequences of integers. The American Mathematical Monthly, 68(6):557, 1961.

围 Aviezri S. Fraenkel. The use and usefulness of numeration systems. Information and Computation, 81(1):46-61, 1989.

Thomas C. Martinez, Steven J. Miller, Clay Mizgerd, and Chenyang Sun. Generalizing Zeckendorf's Theorem to Homogeneous Linear Recurrences, 2020

Acknowledgements

- This research was conducted as part of the 2020 SMALL REU program at Williams College. This work was supported by NSF Grants DMS1947438 and DMS1561945, Williams College, Yale University, and the University of Rochester.
- Thank you. Any questions?

Appendix

Proof of Denseness Theorem

We use that the λ_{L} roots are decreasing, and $\lim _{L \rightarrow \infty} \lambda_{L}=1$.

Proof.

Consider the following incomplete sequences:

$$
\left[1,0, \ldots, 0,\left\lceil\frac{L(L+1)}{2}\right\rceil+1\right],\left[1,0, \ldots, 0,\left\lceil\frac{L(L+1)}{2}\right\rceil+2\right], \ldots,\left[1,0, \ldots, 0,2^{L}\right]
$$

- The root of the first sequence approaches 1 .
- Roots of consecutive sequence increase at a decreasing rate.
- Root of the last sequence exceeds 2 .
- Thus for $\lambda_{L}<1+\varepsilon$, roots are going up by at most ε.

