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Introduction
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Motivation

• Positive linear recurrence sequences (PLRS)

generalize the Fibonacci numbers in Zeckendorf’s

theorem.

• Complete sequences can be used to to express integers

using sums of terms.

Research Question

How can we determine whether a PLRS is complete based on

the coefficients in its defining recurrence relation?
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Positive Linear Recurrence Sequences

Definition

A sequence {Hi}i≥1 of positive integers is a Positive Linear

Recurrence Sequence (PLRS) if:

• (Recurrence relation) There are non-negative integers

L, c1, . . . , cL such that

Hn+1 = c1Hn + · · ·+ cLHn+1−L

with L, c1, cL positive.

• (Initial conditions) H1 = 1, and for 1 ≤ n ≤ L,

Hn+1 = c1Hn + · · ·+ cnH1 + 1
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Positive Linear Recurrence Sequences

• Write [c1, . . . , cL] for Hn+1 = c1Hn + · · ·+ cLHn−L+1.

• Fibonacci numbers: [1, 1]. Initial conditions

F1 = 1, F2 = 2.

• (Lucas and Pell numbers are not PLRS, due to initial

conditions).
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Introduction to Completeness

Definition

A sequence {Hi}i≥1 is complete if every positive integer is a

sum of its terms, using each term at most once.

• The sequence [1, 3] is not complete. Its terms are

{1, 2, 5, 11, . . . }; you cannot get 4 or 9.

• The Fibonacci sequence is complete (follows from

Zeckendorf’s Theorem).
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The Doubling Sequence Hn+1 = 2Hn

The PLRS [2] has terms Hn = 2n−1, i.e., {1, 2, 4, 8, . . .}, and is

complete (every integer has a binary representation).

Theorem (Brown)

The complete sequence with maximal terms is Hn = 2n−1.

Any PLRS of the form [1, . . . , 1, 2] has the same terms as [2],

i.e., Hn = 2n−1.
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Brown’s Criterion

Theorem (Brown)

A nondecreasing sequence {Hi}i≥1 is complete if and only if

H1 = 1 and for every n ≥ 1,

Hn+1 ≤ 1 +
n∑

i=1

Hi .

Definition

The n-th Brown’s Gap of a sequence {Hi}i≥1 is

BH,n := 1 +

(
n−1∑
i=1

Hi

)
− Hn.
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Modifying Sequences
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Example for L = 6

Example

[1, 0, 0, 0, 0,N] is complete if and only if N ≤ 11.

Question

Is there another choice of coefficients [c1, . . . , c5,N], that

generates a complete PLRS, with some N > 11?
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Example for L = 6

• [1, 0, 0, 0, 0,N] is complete for N ≤ 11.

• [1, 1, 0, 0, 0,N] is complete for N ≤ 11.

• [1, 0, 1, 0, 0,N] is complete for N ≤ 12.

• [1, 0, 0, 1, 0,N] is complete for N ≤ 11.

• [1, 0, 0, 0, 1,N] is complete for N ≤ 10.

Why is [1, 0, 1, 0, 0, 12] complete, but [1, 0, 0, 0, 0, 12] is not

complete?
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Example for L = 6

Why is [1, 0, 1, 0, 0, 12] complete, but [1, 0, 0, 0, 0, 12] is not

complete?

• [1, 0, 0, 0, 0, 12] has terms {1, 2, 3, 4, 5, 6, 18, 42, . . . }
and so computing 1 +

∑n
i=1 Hi we see

{2, 4, 7, 11, 16, 22, 40, . . . }
• [1, 0, 1, 0, 0, 12] has terms {1, 2, 3, 5, 8, 12, 29, 61, . . . }

and so computing 1 +
∑n

i=1 Hi we see

{2, 4, 7, 12, 20, 32, 61, . . . }
• [1, 1, 1, 0, 0, 12] has terms {1, 2, 4, 8, 15, 28, 63, . . . }

and so computing 1 +
∑n

i=1 Hi we see

{2, 4, 8, 16, 31, 59, . . . }
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Modifying Coefficients of a PLRS

What modifications to the coefficients preserve completeness

or incompleteness?

Theorem (SMALL 2020)

If [c1, . . . , cL] is any incomplete sequence, then the sequence

[c1, . . . , cL−2, cL−1 + cL] is also incomplete.

Theorem (SMALL 2020)

If a sequence [c1, . . . , cL−1, cL] is complete, then so is

[c1, . . . , cL−1, dL] for any 1 ≤ dL ≤ cL.

Remark. Not true for ci in an arbitrary position.

We discuss bounds for the last coefficient.
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Families of Sequences
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Analyzing Families of Sequences

Theorem (SMALL 2020)

• [1, 0, . . . , 0︸ ︷︷ ︸
k

,N], is complete if and only if

N ≤
⌊

(k + 2)(k + 3)

4
+

1

2

⌋
.

• [1, 1, 0, . . . , 0,︸ ︷︷ ︸
k

N], is complete if and only if

N ≤
⌊
Fk+6 − (k + 5)

4

⌋
,

where Fk is the kth Fibonacci number.
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Proof Sketch

Theorem

[1, 0, . . . , 0,N], with k zeros, is complete if and only if

N ≤
⌊
(k+2)(k+3)

4
+ 1

2

⌋
.

Partial Proof. We sketch that if Nmax =
⌊
(k+2)(k+3)

4
+ 1

2

⌋
,

then the sequence is complete.

With the recurrence relation and Brown’s criterion,

Hn+1 = Hn + NmaxHn−k−1

≤ Hn + (Nmax − 1)Hn−k−1 + Hn−k−2 + · · ·+ H1 + 1

By induction, (Nmax − 1)Hn−k−1 ≤ Hn−1 + · · ·+ Hn−k−1, so

≤ Hn + · · ·+ H1 + 1.
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Theorem on Switching Ones

Theorem (SMALL 2020)

Let L ≥ 6 fixed and {Hn} = [1, 0, . . . , 0︸ ︷︷ ︸
L−g−3

, 1, 0, . . . , 0︸ ︷︷ ︸
g

,M],

0 < g ≤ L− 3. If M is maximal such that {Hn} is complete,

and N is maximal such that [1, 0, . . . , 0,N] is complete,

M ≥ N .

In particular,

• [1, 0, . . . , 0, 0, 1,M] is complete if and only if M ≤ N − 1

• [1, 0, . . . , 0, 1, 0,M] is complete if and only if M ≤ N .
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Sequences of Initial Ones

Theorem (SMALL 2020)

If a sequence [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

,N] is complete with g ≥ 3,

then

N ≤ 1

2

1 +
k+1∑
i=1

F
(g)
i +

k+1−g∑
i=1

F
(g)
i + · · ·+

(k+1)mod g∑
i=1

F
(g)
i


where F

(g)
i is the g -bonacci sequence, [1, . . . , 1︸ ︷︷ ︸

g

].
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Sequences of Initial Ones

Conjecture (SMALL 2020)

If a sequence [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

,N] is complete, then so is

[1, . . . , 1︸ ︷︷ ︸
g+j

, 0, . . . , 0︸ ︷︷ ︸
k

,N] for any positive integer j .

Theorem (SMALL 2020)

Consider [1, . . . , 1︸ ︷︷ ︸
g

, 0, . . . , 0︸ ︷︷ ︸
k

,N].

• For g ≥ k + dlog2 ke, the bound on N is N ≤ 2k+1 − 1

• For k ≤ g < k + dlog2 ke, the bound on N is

N ≤ 2k+1 −
⌈

k

2g−k

⌉
21



The 2L− 1 conjecture
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The 2L− 1 conjecture

Can we bound where a sequence must fail Brown’s Criterion?

We think so!

Conjecture (SMALL 2020)

If a PLRS Hn+1 = c1Hn + · · ·+ cLHn+1−L incomplete, then it

fails Brown’s criterion before the 2L-th term.

The closest we’ve gotten:

Theorem (SMALL 2020)

The PLRS {Hi}i≥1 generated by [c1, . . . , cL] is complete if{
BH,n ≥ 0, 1 ≤ n < L

BH,n > 0, L ≤ n ≤ 2L− 1
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Conditional result on Adding Ones

If the 2L− 1 conjecture holds, we have the following:

Theorem (SMALL 2020)

For a fixed length L, the sequence [1, 0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
m

,N]

with m ones has a lower bound on N than the sequence

[1, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1, . . . , 1︸ ︷︷ ︸
m+1

,N].

In particular, if m < L
2

, the bound is precisely

N ≤
⌊

(L−m) (L + m + 1)

4
+

1

48
m(m + 1)(m + 2)(m + 3) +

1− 2m

2

⌋
.
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Binet’s Formula and Generalizations
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Characteristic Polynomials

Definition

For a PLRS {Hn} defined by [c1, . . . , cL], define the

characteristic polynomial

p(x) = xL −
L∑

i=1

cix
L−i .

• By Descartes’s Rule of Signs, p(x) there is one positive

real root, the principal root.

• The principal root is always the largest: for any root

z ∈ C, |z | < r .
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Generalized Binet’s Formula

Theorem (Generalized Binet’s Formula)

If r1, . . . , rk are the roots of the polynomial of a linear

recurrence {Hn} with multiplicities m1, . . . ,mk , there are

polynomials q1, . . . , qk with deg(qi) ≤ mi − 1 such that

Hn = q1(n)rn1 + . . . + qk(n)rnk .

• If {Hn} is a PLRS, let r1 be the principal root; since

m1 = 1 and for all i , r1 > |ri |, then Hn = Θ(rn1 ).

• Complete sequences should grow “slowly”. Can we relate

the size of r1 to completeness?
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Bounding the Principal Root
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First Bounds on r1

Recall p(x) = xL −
∑L

i=1 cix
L−i .

As cL ≥ 1, we know r1 > 1. (cL =
∏

rmi
i , and r1 is the biggest

root by magnitude).

Lemma (SMALL 2020)

If Hn is a complete PLRS and r1 is its principal root, then

r1 ≤ 2.

Proof.

Otherwise, as Hn = Θ (rn1 ), for large n our terms would

exceed the maximal sequence {2n−1}.

Note: there are incomplete sequences with principal roots

r ≤ 2.
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Is 2 a Useful Bound?

• We can find complete sequences with roots of sizes

arbitrarily close to 2. (Sequences of the form [1, . . . , 1︸ ︷︷ ︸
L

].)

• Checking r1 ≤ 2 is a fast method to eliminate candidates

for completeness.

• p(x) = xL −
∑L

i=1 cix
L−i has one positive real root, and

p(x) > 0 for large x , so r1 ≤ 2 if and only if p(2) ≥ 0.

This is much faster than checking Brown’s Criterion!
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Lower Bound

Lemma (SMALL 2020)

For any L, there exists a second bound BL such that if a

sequence [c1, . . . , cL] is incomplete, then r1 ≥ BL.

Proof.

• There are finitely many sequences [c1, . . . , cL] with

p(2) = 2L −
∑L

i=1 ci2
L−i ≥ 0.

• Hence finitely many incomplete sequences with r1 ≤ 2, so

just find the minimum root - BL.

We now aim to determine the precise values of BL.
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The Minimal Incomplete Sequence

Theorem (SMALL 2020)

[1, 0, . . . , 0︸ ︷︷ ︸
L−2

,N], is complete if and only if

N ≤
⌈
L(L + 1)

4

⌉
.

Conjecture (SMALL 2020)

For any L, the incomplete sequence of length L with smallest

principal root is [1, 0, . . . , 0,
⌈
L(L+1)

4

⌉
+ 1].

• Let λL the principal root of [1, 0, . . . , 0,
⌈
L(L+1)

4

⌉
+ 1].

This is saying λL = BL, for all L.
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Denseness of Incomplete Roots

Theorem (SMALL 2020)

For any L ∈ Z+, let RL be the set of roots of all incomplete

PLRS of length L. Then, for any ε > 0, there exists an M

such that for all L > M , for any ε-ball Bε ⊂ [1, 2],

Bε ∩ RL 6= ∅.

Corollary

The set R =
⋃∞

L=1 RL of all principal roots of incomplete

sequences is dense in [1, 2].
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Appendix



Proof of Denseness Theorem

We use that the λL roots are decreasing, and limL→∞ λL = 1.

Proof.

Consider the following incomplete sequences:

[1, 0, . . . , 0,
⌈
L(L+1)

2

⌉
+ 1], [1, 0, . . . , 0,

⌈
L(L+1)

2

⌉
+ 2], . . . , [1, 0, . . . , 0, 2L]

• The root of the first sequence approaches 1.

• Roots of consecutive sequence increase at a decreasing

rate.

• Root of the last sequence exceeds 2.

• Thus for λL < 1 + ε, roots are going up by at most ε.
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