How do Algebraic Curves Intersect?

Jack Haviland
University of Michigan
Directed Reading Program Fall 2019

December 3, 2019

The Plan

(1) Algebraic Curves
(2) Projective Geometry
(3) Intersection Multiplicity
(4) Bezout's Theorem

(5) The Group Law on Cubics

What are Algebraic Curves?

- An algebraic curve is the zero set of a polynomial in two variables. That is,

Definition

An algebraic curve is a set X such that X takes the form

$$
\{(x, y) \mid f(x, y)=0\}
$$

for a polynomial f in the variables x and y. Such a set is denoted by $V(f)$.

Examples of Algebraic Curves

- The unit circle $x^{2}+y^{2}-1=0$.

- Two intersecting lines: $x y=0$.

Intersections of Algebraic Curves

- One question we can ask about algebraic curves is when two of them intersect.
- For example, consider the lines $x-y=0$ and $x+2 y-3=0$.
- There are two ways we can find the intersection:

Algebra
Picture

$$
\left\{\begin{array}{l}
x-y=0 \\
x+2 y-3=0
\end{array}\right.
$$

- Either way, we find that there is one intersection point: $(1,1)$.

Intersections of Algebraic Curves

- Another example: consider the lines $2 x+y-5=0$ and $4 x+2 y+3=0$.
- We could try the same methods as before:

Algebra
Picture

$$
\left\{\begin{array}{l}
2 x+y-5=0 \\
4 x+2 y+3=0
\end{array}\right.
$$

- This time, we don't get any intersection because the lines are parallel.

Intersections of Algebraic Curves

- Every pair of lines falls into exactly one of the following two categories:
(1) The lines intersect at exactly one point.
(2) The lines are parallel.
- We need a way to treat these cases the same way.
- In other words, a sense in which parallel lines intersect exactly once.

Projective Geometry

Definition

Projective 2-space, denoted \mathbb{P}^{2}, is defined as all triples of homogeneous coordinates $(X: Y: Z)$

- Homogeneous coordinates are triples representing a line through the origin in 3 dimensions. So $(X: Y: Z)$ and $(t X: t Y: t Z)$ represent the same point.
- The convention is to differentiate between affine and projective objects by using lowercase and uppercase letters, respectively.

The Plane as a Subset of \mathbb{P}^{2}

- Consider the collection of points $(X: Y: 1)$ in \mathbb{P}^{2}. This is exactly a copy of the affine plane.

- Here the homogeneous point $(-1: 1: 1)$ corresponds to the affine point ($-1,1$).
- This works because lines through the origin can pass through the plane $z=1$ exactly one time.

Points With $Z=0$ as Directions

- Every other point in \mathbb{P}^{2} has $Z=0$, otherwise

$$
(X: Y: Z)=(X / Z: Y / Z: 1)
$$

- These points with $Z=0$ are lines through the origin in the plane $z=0$. So we can think of them as directions on the affine plane living in \mathbb{P}^{2}.

- These points are often called points at infinity.

Homogeneous Polynomials

- We know how to go between coordinates - given (x, y) in the plane, the corresponding point in \mathbb{P}^{2} is $(X: Y: 1)$. In fact, we can make a similar construction for polynomials.
- Take a polynomial in x and y and "fill in the gaps" to create a homogeneous polynomial in X, Y, and Z.
- For example,

$$
\begin{aligned}
x^{2}+y-2 & \leadsto X^{2}+Y Z-2 Z^{2} \\
x^{5} y-3 x y^{3}+47 y & \leadsto X^{5} Y-3 X Y^{3} Z^{2}+47 Y Z^{5}
\end{aligned}
$$

- This allows us to use projective geometry to discuss algebraic curves.

Intersections of Homogeneous Polynomials

- Now that we have homogeneous polynomials, we can ask about how they intersect and how this differs from the polynomials we had before.
- First, it is important to distinguish the two different ways for homogeneous polynomials to share a root.
(1) The root has the form $(X: Y: 1)$, in which case (x, y) is a shared root of the corresponding affine polynomial.
(2) The root has the form $(X: Y: 0)$. We need to think a little bit more about what this means.

Intersections of Homogeneous Polynomials (with $Z=0$)

- Let's go back to the example of the parallel lines from before.
- Recall that the lines were defined by

$$
2 x+y-5=0 \quad \text { and } \quad 4 x+2 y+3=0
$$

- The corresponding homogeneous polynomials are

$$
2 X+Y-5 Z=0 \quad \text { and } \quad 4 X+2 Y+3 Z=0
$$

- We know that these don't have any shared points with $Z=1$, because such a point would be an intersection of the two lines.
- So let's think about $Z=0$. Then we want to find a solution to the pair of equations

$$
\left\{\begin{array}{l}
2 X+Y=0 \\
4 X+2 Y=0
\end{array}\right.
$$

- $X=-1, Y=2$ is a solution, so $(-1: 2: 0)$ is a shared root of our homogeneous lines.

Intersecting at Infinity

- We said before that projective points with $Z=0$ can be thought of as points at infinity, or as directions. So what does it mean if two polynomials share one as a vanishing point?
- It means, in some sense, that the polynomials share a direction rather than a point.
- This allows us to treat the case of parallel lines the same way we treat a pair of non-parallel lines
- The non-parallel lines share an affine point.
- The parallel lines share a point at infinity, i.e. they share a direction.
- This coincides nicely with the idea of being parallel, which really means that the lines are going in the same direction.

Intersection Multiplicity

- Another problem we could have is tangent intersections.

- The way we resolve this is intersection multiplicity. This is similar to the multiplicity of roots of polynomials.
- The more two curves look like each other at an intersection point, the higher the intersection multiplicity of that point is.

Bezout's Theorem

- We are finally ready to state Bezout's Theorem!

Theorem (Bezout's Theorem)

If $p(x, y)$ and $q(x, y)$ are two polynomials of respective degrees n and m, then the algebraic curves defined by $p=0$ and $q=0$ intersect at exactly nm points, accounting for complex roots, intersections at infinity, and intersection multiplicity.

- It is clear now that we need all the conditions in the theorem in order for it to hold:
- If we don't allow for complex roots, some polynomials may not have any roots at all, so the corresponding algebraic curves will be empty.
- If we don't consider intersections at infinity, some algebraic curves will not intersect.
- If we don't consider intersection multiplicity, the number of intersections will be counted as too low.

The Group Law on Cubics

- A cubic is a polynomial whose largest term has degree three.

- It is convenient to take $\mathcal{O}=(0: 1: 0)$ because this is a vertical line.

Thank you!

