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Abstract

We undertake a fundamental construction in homological algebra: the de-
rived category of an arbitrary abelian category. After translating familiar homo-
logical notions like kernels, exactness, and cohomology into categorical terms,
we construct the derived category via localization and discuss a case where
localization is not necessary for understanding the derived category.

Contents
1 Introduction 1

2 Additive and Abelian Categories 2
2.1 Additive Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Kernels and Cokernels; Canonical Decompositions . . . . . . . . . . . 3

3 Complexes 5
3.1 The Category of Complexes . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Constructing the Derived Category 8
4.1 Localization of a Category . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Introduction
Derived categories are of central importance in homological algebra. Understanding
how functors fail to be exact can be extremely helpful for computing invariants.
As an easy example, knowing that every finite-dimensional vector space is flat (i.e.,
the tensor product is exact on finite-dimensional vector spaces) gives us a way to
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inductively compute the dimension of a tensor product. Since we have the split exact
sequence

0 → kn−1 → kn → k → 0, (1.1)

if we tensor with another vector space V , we obtain

0 → kn−1 ⊗ V → kn ⊗ V → V → 0. (1.2)

This sequence also splits (every short exact sequence of vector spaces splits), so by
induction it follows that V ⊗kn = n dimV . In more interesting settings, the situation
is much more complicated, but exact sequences are still a powerful computational tool
and it is valuable to measure how exactness holds or fails.

A functors (left or right) derived functors are usually how we measure exactness.
Derived categories, by replacing objects with complexes and considering equivalence
up to cohomology rather than requiring strict equivalence, provide a natural set-
ting for derived functors. Although derived functors can be defined without derived
categories, their construction is more natural in the context of derived categories.

Our presentation roughly follows that of Manin and Gelfand’s Methods of Homo-
logical Algebra [2], with some deviations in order and details. Weibel’s An Introduction
to Homological Algebra [3] is also an excellent reference and offers more content on
other aspects of the subject.

In Section 2, we show how useful features of the categories Ab and, more generally,
ModR can be reformulated categorically. This includes the additive structure inherited
by maps and objects as well as the canonical decomposition of a map into a sequence
of kernels and cokernels.

In Section 3, we use the categorical constructions of abelian categories to define
familiar homological constructions like cohomology and chain homotopies. We see
how a cochain map induces a map in each degree of homology and that this makes
cohomology a functor from complexes to objects. We also discuss how homotopies
give a weaker notion of equivalence of maps and homotopic maps induce the same
maps in cohomology. This means we have a category of complexes and homotopy
classes of chain maps, which is interchangable with the usual category of complexes
in the construction of the derived category.

Finally, in Section 4, we construct the derived category of an abelian category by
adjoining formal inverses of quasi-isomorphisms to the category of complexes. We go
on to show that localization is a necessary process and in particular, using cohomology
to form a complex does not give the same result in general.

Because it is fixed in the literature, we will take the cochain/cohomological con-
vention that complexes are increasing in degree. We will also use common notational
conveniences like writing fg for the composition f ◦ g and writing X ∈ C to mean X
is an object in the category C even though X ∈ Obj C or something similar would be
more precise.

2



DERIVED CATEGORIES 2 ADDITIVE AND ABELIAN CATEGORIES

2 Additive and Abelian Categories
In this section we cover the necessary facts about additive and abelian categories for
our construction and discussion of derived categories.

2.1 Additive Categories

As the name suggests, the key features of additive categories are ways to add things.
More specifically, ways to add maps and objects. Note that Ab and ModR, we add
maps by elementwise and add objects by taking direct sums, which (at least in the
finite case) are simultaneously products and coproducts. In a categorical setting,
adding maps elementwise doesn’t make sense, so we will explicitly require that there
is a way to add maps in an additive category.

Definition 2.1 (Pre-additive category). A category C is pre-additive if HomC(X, Y )
has an abelian group structure for all X, Y ∈ C and composition distributes over
addition on both sides.

This additive structure on HomC(X, Y ) turns out to be helpful when thinking
about how to add objects.

Proposition 2.2. If C is a pre-additive category, then the product of a finite collection
of objects (if it exists) is also their coproduct, and vice-versa.

Proof. For some objects X1, . . . , Xn ∈ C, define δij : Xi → Xj by

δij =

!
0 ∈ HomC(Xi, Xj) if i ∕= j

idXj
if i = j.

(2.1)

If
"n

j=1 Xj exists in C, then for each i, the maps δij define a map Xi →
"n

j=1 Xj

by the universal property of the product and these maps make
"n

j=1 Xj satisfy the
universal property for the coproduct of the Xj’s. If

#n
i=1 Xi exists in C, then for each

j, the maps δij make
#n

i=1 Xi the product of the Xi’s.

In a pre-additive category, if the product (equivalently, coproduct) of a finite
collection of objects X1, . . . , Xn exists, we call it the direct sum and denote it by$n

i=1 Xi. It is equipped with canonical maps Xj →
$n

i=1 Xi and
$n

i=1 Xi → Xj for
all j. As a special case, the direct sum of two objects X, Y ∈ C (if it exists) is denoted
by X ⊕ Y .

This is our notion of adding objects. So we define an additive category to be one
where we can add maps (pre-additive) and we can always add objects (all direct sums
exist).

Definition 2.3 (Additive category). A category is additive if it is pre-additive and
all finite direct sums exist.
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Remark 2.4. A initial object is the coproduct of an empty collection of objects, while
a terminal object is the product of an empty collection. Thus, an additive category
has an object which is both initial and terminal, i.e., a zero object. An important
property is that the (categorical) zero map X → 0 → Y is the (additive) zero element
of HomC(X, Y ); this follows from the fact that composing with the (additive) zero map
gives zero (since a0 = a0 + a0 and 0b = 0b+ 0b) and HomC(X, 0) = HomC(0, Y ) = 0
as abelian groups.

2.2 Kernels and Cokernels; Canonical Decompositions

In any category with a zero, we can define kernels and cokernels of maps.

Definition 2.5 (Kernel, cokernel). Suppose C is a category with a 0 object. A map
k : K → X is the kernel of the map f : X → Y if, for any g : A → X such that fg = 0,
g factors uniquely through k.

A X Y

K

g

0

∃!

f

k (2.2)

Dually, a map c : Y → C is the cokernel of the map f : X → Y if, for any
h : Y → B such that hf = 0, h factors uniquely through c.

X Y B

C

f

0

h

c
∃!

(2.3)

The kernel of f is denoted by ker f and the cokernel by cok f . We will frequently
refer to the kernel and cokernel by the objects K and C rather than the maps k and
c.

Thinking in terms of Ab and ModR, the map A → ker f as in (2.2) is the inclusion
of the image of g into ker f ; such an inclusion must exist becuase fg = 0. In (2.3), the
kernel of h must include im f because hf = 0, so the map C → B is the projection
of C = Y/ im f onto B = Y/ kerh.

Proposition 2.6. The following are important properties of kernels and cokernels in
an additive category:

• Every kernel in an additive category is a monomorphism; every cokernel is an
epimorphism.
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• A map f : X → Y is monic if and only if ker f = 0 and epic if and only if
cok f = 0.

If the kernel and cokernel of a map f : X → Y both exist, then we have the
decomposition

ker f X Y cok f.
f (2.4)

The kernel and cokernel are nice maps (in particular, monic and epic), but f may be
very strange. The following decompositions are nicer, but there may not be a way to
connect them.

ker f X cok(ker f) and ker(cok f) Y cok f

(2.5)
In Ab and ModR, we can always connect these sequences: we can decompose any map
f : X → Y as

ker f X im f Y cok f,
f (2.6)

where im f = cok(ker f) = ker(cok f). This is called the canonical decomposition of
f . In abelian categories, we want to be able to similarly decompose any map, so the
existence of such a decomposition

Definition 2.7 (Abelian category). A category is abelian if it is additive, every map
has both a kernel and cokernel, and if f is any map, then cok(ker f) and ker(cok f)
are canonically isomorphic.

This definition allows us to unify the separate decompositions in (2.5), so every
map has a canonical decomposition as in (2.6). Motivated by this definition, we
denote cok(ker f) = ker(cok f) by im f . Note that in more general settings, we can
use im f to refer to ker(cok f) and coim f to refer to cok(ker f).

Another convenient consequence of Definition 2.7 is that every monomorphism
is the kernel of its cokernel and every epimorphism is the cokernel of its kernel;
in particular, a map is monic if and only if it is a kernel and epic if and only if
it is a cokernel. In fact, this property can replace the existence of the canonical
decomposition. Aluffi [1] uses this definition and proves the existence of the canonical
decomposition in chapter IX.

3 Complexes
Since we want to work with complexes when constructing the derived category, we
need to figure out how to emulate the usual homological constructions with the for-
malism of Section 2.
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3.1 The Category of Complexes

Defining complexes is easy enough and can be done in additive cateogories, and we
can define cohomology by examining kernels and cokernels in abelian categories.

Definition 3.1 (Complex, cohomology, exact). (a) A complex in an additive cate-
gory C is a sequence of objects Cn and maps dn : Cn → Cn+1, n ∈ Z, such that
dn+1 ◦ dn = 0. The maps dn are called boundary or differential maps and usually
written without indexes, so their defining condition is d ◦ d = 0. We denote such
a complex by C•.

C• : · · · Cn−1 Cn Cn+1 · · ·dn−1 dn (3.1)

(b) If C is abelian, then we can factor dn through ker dn+1 by an and dn+1 through
cok dn by bn+1 using the universal properties. We then define Hn(C•) = cok an =
ker bn.

Hn(C•) := ker bn+1 cok dn

Cn Cn+1 Cn+2

ker dn+1 cok an =: Hn(C•)

bn+1

dn

an

dn+1 (3.2)

We say C• is exact at Cn if Hn(C•) = 0 and simply exact if it is exact at each
term.

To check that this definition of cohomology matches the usual definition in Ab
and ModR, note that cok an is (in this case) the quotient of ker dn+1 by the image
of an, but an is just the inclusion of im dn into ker dn+1, so we recover the usual
Hn(C•) = ker dn+1/ im dn. For the other definition, Hn(C•) = ker bn+1, note that
cok dn = Cn+1/ im dn, and bn is induced from dn+1, so ker bn is the elements the
projected to Cn+1/ im dn from ker dn+1. That is, ker bn = ker dn+1/ im dn.

Of course, this does not prove that ker bn+1 ∼= cok an in any abelian category, but
since we have plenty more to discuss about complexes, the intuitive explanation will
have to suffice. Our next step is to define the category of complexes over an abelian
category and show that each degree of cohomology gives a functor from complexes to
spaces.

Definition 3.2 (Map of complexes). If C•, D• are complexes in an additive category,
then a map of complexes or cochain map f : C• → D• is a sequence of maps fn : Cn →
Dn that commute with the boundary maps. More precisely, the following diagram
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commutes for all n.

C• : · · · Cn Cn+1 · · ·

D• : · · · Dn Dn+1 · · ·

dn

fn fn+1

dn

(3.3)

It is clear that if we have two cochain maps, then their composition, defined
by composition in each degree, is also a cochain map. Thus, we have the category of
complexes in C, denoted Kom C. As noted above, taking cohomology defines a functor
Kom C → C. More precisely, for each n, we have defined Hn : Kom C → C on objects,
but we need to know how to define it on maps.

Suppose f : C• → D• is a cochain map. The following diagram summarizes our
argument.

ker dn+1
C Hn(C•) = cok anC

Cn Cn+1 Cn+2

Dn Dn+1 Dn+2

ker dn+1
D Hn(D•) = cok anD

anC

fn

dn+1
C

fn+1 fn+1

anD

dn+1
D

(3.4)

We follow the blue arrows, then the red arrows. The blue composition ker dn+1
C →

Dn+2 is zero because we can apply commutativity to use the green arrows instead,
and the blue/green composition involves ker dn+1

C → Cn+1 → Cn+2, hence is zero.
By the kernel universal property applied to ker dn+1

D , this gives the dashed blue map
ker dn+1

C → ker dn+1
D .

Now, the red composition (the map ker dn+1
C → ker dn+1

D is the one we just con-
structed; it is repeated as it needs to be more than one color) is zero because we can
apply commutativity to use the orange arrows instead, and the orange/red composi-
tion involves Dn → ker dn+1

D → cok anD, hence is zero. By the cokernel universal prop-
erty applied to Hn(C•) = cok anC , this gives the dashed red map Hn(C•) → Hn(D•)
as desired.

Examining (3.4), we can imagine adding another complex E• under the diagram
with a cochain map g : D• → E•. Then commutativity of the huge diagram would
tell us that the composition Hn(g)Hn(f) we get from chasing f and g separately is
the same as the map Hn(gf) we get from chasing gf . Thus, cohomology is a functor
Kom C → C.

Henceforth, we will omit indices from out maps to avoid cluttered notation and
diagrams. This does not cause any real problems because the relevant indices can
always be deduced from how maps are being composed and compared.
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3.2 Homotopy

Homotopies give us a weaker sense of equivalence between cochain maps.

Definition 3.3 (Homotopy). If f, g : C• → D• are two cochain map, a homotopy
between f and g is a sequence of maps h : Cn+1 → Dn such that f − g = hd+ dh.

C• : · · · Cn−1 Cn Cn+1 · · ·

D• : · · · Dn−1 Dn Dn+1 · · ·

d

fg

d

fg
h

fgh (3.5)

Note that this diagram does not commute, and h is not a map of complexes. If such
a homotopy exists between f and g, we say f and g are homotopic and write f ≃ g.

Remark 3.4. The name homotopy comes from algebraic topology, in which a homotopy
is a way to continuously deform a map of spaces into another map. In this setting,
homotopies as we have defined them are called chain homotopies to avoid ambiguity.
The connection between the two notions is that topological homotopies between maps
of spaces induce chain homotopies betwen the induced maps on singular chains, and
hence the same map in singular homology. This implies homotopy equivalences induce
isomorphisms in singular homology.

It is easy to see that ≃ is an equivalence relation on maps in Kom C and that
compositions of homtopic maps are homotopic (admittedly, this is less clear, but
amounts to a diagram chase), so we can define a new category K C whose objects are
complexes in C and whose maps are homotopy classes (i.e., equivalence classes of ≃)
of maps in Kom C.

A very important property of homotopies is that homotopic cochain maps induce
the same maps in cohomology. This becomes relevant when we look at derived cat-
egories, which turn equivalences in cohomology into actual equivalences, so we will
only need to think about cochain maps up to homotopy.

Proposition 3.5. If f, g : C• → D• are homotopic cochain maps, then for all n,
Hn(f) = Hn(g).

Proof. It suffices to show that if f ≃ 0, then Hn(f) = 0. This amounts to a diagram
chase by expressing Hn(f) = Hn(hd) +Hn(dh) for some homotopy h showing f ≃ 0
and using the diagram from (3.4). We have spent enough time diagram chasing for
this section, so we omit the details.

4 Constructing the Derived Category

4.1 Localization of a Category

The construction of the derived category is a generalization of the construction of the
localization of a ring. We want to be able to look at a category of complexes, but
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under a weaker notion of equivalence than cochain isomorphisms. In particular, two
complexes should be considered the same if they have the same cohomology. The
easiest way to do this is to simply declare that any cochain maps which descends
to an isomorphisms in every degree of cohomology are isomorphisms, and see what
results.

Definition 4.1 (Quasi-isomorphism). A cochain map f : C• → D• is a quasi-isomorphism
if Hn(f) is an isomorphism for all n. In this case, we say C• is quasi-isomorphic to
D•.

Thus, by Proposition 3.5, any map homotopic to a cochain isomorphism is a quasi-
isomorphism. Note that a priori, being quasi-isomoprhic is not a symmetric relation,
since a quasi-isomorphism does not need to have an inverse. Similarly, two complexes
with equal homology need not be quasi-isomorphic.

We define the derived category of an abelian category by essentially the same
universal property used for the localization of a ring. This strengthens the idea that
we are formally adjoining inverses to quasi-isomorphisms.

Theorem 4.2. Suppose C is an abelian category. There is a category DC with a
functor Q : Kom C → DC such that

(1) for any quasi-isomorphism f in Kom C, Q(f) is an isomorphism in DC;

(2) if F : Kom C → B is a functor taking quasi-isomorphisms to isomorphisms,
then F factors uniquely through Q in the sense that there is a unique functor
G : DC → B such that F = GQ.

We call DC the derived category of C.

The first condition ensures that every quasi-isomorphism becomes an isomorphism
in DC, while the second ensures that DC is the smallest possible category containing
inverses for all quasi-isomorphisms.

Proof. We will work in much more generality: suppose instead that A is an arbitrary
category and S is a collection of maps in A. We construct a category S−1A and a
“localization functor” Q : A → S−1A as follows: to start, the objects of S−1A are the
objects of A.

For the maps of S−1A, construct a direct graph whose vertices are the objects of
A and whose edges are the maps of A, oriented from source to target, along with a
reversed edge for each element of S. So if f : X → Y is a map in A, then X

f−→ Y is
an edge in the graph and if f ∈ S, there is also a corresponding edge Y → X, which
we label xf . A map in S−1A is a path in this graph, up to replacing

X
f−→ Y

g−→ Z with X
gf−→ Z (4.1)
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and

X
f−→ Y

xf−→ X with X
id−→ X or Y

xf−→ X
f−→ Y with Y

id−→ Y (4.2)

for any f : X → Y , g : Y → Z in A. The composition of two maps is defined by
concatenation.

Finally, the functor Q : A → S−1A takes X to itself and a map f : X → Y to the
path X

f−→ Y (which has length 1). If F : A → B takes elements of S to isomorphisms,
define G : S−1A → B on objects by G(X) = F (X) and on maps by G(f) = F (f),
G(xf ) = F (f)−1, and the obeying functoriality. Then clearly F = GQ and every
definition we made for G is forced by having F = GQ.

Finally, we can now take A = Kom C and Q to be the set of quasi-isomorphisms,
and define DC = Q−1A.

Example 4.3. If R is a ring, we can think of R as a pre-additive category with one
object ∗ and Hom(∗, ∗) = End(R). Then if S ⊆ R, we can also think of S as a set of
maps, and localizing R at S in the usual sense is the same as localizing the category
R at the set of maps S.

4.2 Splitting

The localization construction seems like a lot of work for our goal, which was to make
quasi-isomorphisms into isomorphisms. After all, cohomology can give us a functor
H : Kom C → Kom C by sending H(Cn, d) = (Hn(C•), 0), i.e., sending C• to the
cohomology sequence of C• using zero boundary maps. Certainly, under this functor,
quasi-isomorphisms because isomorphisms. Let’s investigate further.

Since H sends quasi-isomorphisms to isomorphisms, we can factor it through
Q : Kom C → DC; say H = FQ with F : DC → Kom C. In fact, we can go further:
complexes with zero differential form a complete category Kom0 C ⊆ Kom C, and
H is a functor to Kom0 C, so really F : DC → Kom0 C. If F were an equivalence
of categories, then this offers a simpler perspective to localization. The relevant
condition here is splitting short exact sequences.

Definition 4.4 (Split SES). A short exact sequence 0 → A → B → C → 0 in an
abelian category C is split if it is isomorphic to a sequence of the form 0 → X →
X ⊕ Y → Y → 0, where the second and third maps are canonical. The category C is
called semisimple if every short exact sequence splits.

Semisimplicity completely characterizes when the functor F discusses above is an
equivalence.

Proposition 4.5. If C is an abelian category, then DC ∼= Kom0 C via the functor F
if and only if C is semisimple.
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Example 4.6. Every sequence in Modk = Vectk splits when k is a field, but the
sequence

0 Z Z Z/2 02 (4.3)

does not split since Z is torsion-free. This means that the derived category of vector
spaces is equivalent to the category of cyclic complexes of vector spaces, but the same
does not hold for abelian groups.

To see how this plays out, note that the sequence 0 → Z 2−→ Z → 0 has cohomology
Z/2, as does the sequence 0 → Z/2 → 0, but the only map between these complexes
is zero, so there is no quasi-isomorphism between them. Thus, they are distinct
object in the derived category even though they map to the same object under the
cohomology functor.
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